Chapter 10
Introduction to the Parallel Boolean Processor

10.1 INTRODUCTION

The triadic notation introduced in Chapter 9 is used
heavily in the two previously-published papers on the
parallel Boolean processor. The triadic map (see Figure
9.3) is used here to pictorially demonstrate the basic
theorems. Detailed proofs of the theorems are not pre-
sented (they are available in the referenced papers).

The table of intersections(Table 9.2) is based on the
theorems.

10.2 THE THEOREMS
10.2.1 Theorem 3.1

Theorem 3.1 states that if the set of triadic points
represented by the set of point identifiers {a,b c} form
a triad, then if the triadic terms tb and tc both imply
a function y, the triadic term ta implies y. Also, if ta

~implies y then both tb and tc imply vy.
(t, > y) = [(g,> y) n (£, > ]
tbh+ ta_* v tc—> ta—* y

m

The theorem also holds for the complement function Y = y:

(t,> ¥Y) = [(,~ ¥) n (t .+ Y)]
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Figure 10.1 demonstrates Theorem 3.1. The term t24

is the t_ of a triad formed by points {24,25,26}. Since

t24is a given term of the function y, it implies y and

therefore both t25 and t26 imply y.

Points {39,40,41} form a triad. tio and tal

given terms of the function y, and therefore t39 must

are

imply y.
The notation for the complement space in terms of

the function Y is given in Figure 10.2,
10.2.2 Theorem 3.2

Theorem 3.2 states that if the set of triadic points
represented by the set of point identifiers {a,b,c} form
a triad, then if the triadic term tb is a nonimplicant of
(does not imply) function y, then the triadic term ta is
a nonimplicant of y. Also, if tc is a nonimplicant of y,
then ta is a nonimplicant of y.

~(ty > y) > ~(E, > y)

~(t, ry) ot y)

c

It is not necessary for both tb and tC to be nonimplicants

of y for ta to be a nonimplicant of y.
The theorem also applies to the complement space:

~(t, + Y) > ~(t + )
qgtc,+ Y) » ~(ta + Y)

Using the notations of Figures 10.1 and 10.2, and
adding to it to obtain

II a form term for the EIli-form of y
a form term for the Ill-form of Y

1 a term added using Theorem 3.1 from the
given terms shown as II

N a term added using Theorem 3.1 from the
given terms shown as ¥
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Figure 10.1., Theorem 3.1.
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Figure 10.2. Theorem 3.1 in complement space.
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0 a term added using Theorem 3.2 where the
term is a nonimplicant of y

(blank) a blank is a "don't care'" term

/ a term added using Theorem 3.2 where the
term is a nonimplicant of Y

@ a term which is a nonimplicant of y and
a nonimplicant of Y

Figure 10.3 presents a triadic map which combines Figures
10.1 and 10.2 and adds the notations derived by applying
Theorem 3.2 to the expressions for y and for Y. A Marguand
map is also given for reference. This is an incompletely
specified function in that there are points which are
considered '"'don't care".

10.2.3 Theorem 3.3

Theorem 3.3 states that given the triadic term th’
which is an implicant of the function Y, and given any
other triadic term, if the sum of the coefficients of the
identifiers forms non-3 in all positions, then the second
term is a nonimplicant of y. If the sum for any coeffic-
ient position is 3, no conclusion is made about the second

term.
if the {th}Y

b= e Iy Bl

where hi is a coefficient of h in the ith

position, then
(% + h?z 3 for every j) » [(ﬁi* Y)-+~(t§» v)]

This theorem forms the basis for the hardware design of
the parallel Boolean processor. It is demonstrated with
a triadic map in Figure 10.4.
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10.2.4 Theorem 3.4

The "ordering of implicants" referred to earlier is
stated in Theorem 3.4:
For any two triadic terms t, and tﬂﬂ if th implies

tﬁrthen the point identifier (triadic index) h is not

smaller than the point identifier h*.

(t,» t*) > (h 2 1*)
This is obvious from an examination of Figures 9.4 and 9.7.
10.2.5 Theorem 3.5

Theorem 3.5 clarifies prime implicants and is the
basis of the prime implicant generation technique demon-
strated in Chapter 9. The theorem states that any term
in the maximal EIN-form of y which does not imply any other
term in the maximal Zll-form whose triadic index is less
than its own is a prime implicant of the function (see
Figure 9.14).

given {thhmxis the set of terms of the maximal
Lll-form of y,
tye ey and toe (e 0
[~(ﬁ,+ t ) for every t where h < pl

+ (tp is a prime implicant of y)

10.2.6 Theorem 3.6

Theorem 3.6 further defines prime implicants: Given
that the set {th}h*represents terms from the complete sum
of y (the set of all prime implicants of y) such that
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h < h?

h = (hn—lhn-Zhn—B °e -h1hO)3’
* % % * %

h = (hn—lhn—Zhn—3 o hlh())3’

then if at least one th from this set exists for which:

h, + K 3
(J ' )
and (p;z 0) v (h = 0) for every j,

then the term tt is not a prime implicant of y..

10.2.7 Theorem 3.7

The last two theorems, 3.7 and 3.74, are used in
the hardware algorithms. For two triadic terms ty and
1#?* if the sum of the coefficients of their identifiers
is not equal to 3 in all positions while the correspon-
ding coefficient position of h* is not equal to O, then
th implies thf ( Figure 10.5 )

%
For two terms th’ ﬁ],

{[<hj + hj*z 3) n (hj*> 0)] for every j}

- (%—) th)
10.2.8 Theorem 3.7A

This theorem modifies Theorem 3.7. Given {th}mme’
the set of prime implicants for the function Y = y, then
for any~term ty from this set and any term th*’ if the
sum of the coefficients of h and h* is not equal to 3 in
all positions while the corresponding coefficient of n*

is not equal to O, then t_xis a nonimplicant of y.

h
{[(% + a; z 3) n (hj*> 0)] for every j}

- N(th* > Y)
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10.3 THE ORIGINAL DESIGN OF THE PARALLEL BOOLEAN PROCESSOR

10.3.1 Introduction

The preceeding theorems and the previously-presen-
ted material on triadic maps form the basis for the para-
l1lel Boolean processor designed by Svoboda. The proces-
sor has been described in the literature under the name
of the Boolean analyzer.

The parallel Boolean processor is a special proces-
sor designed to solve certain fundamental problems. ’Some
of these are: ‘ .

1. The listing of prime implicants

2. The solution of general systems of
Boolean equations

3. The solution of special design automation
problems

4. The generation of a test sequence for
combinational circuits

5. The generation of the Boolean difference
for Xy for a function F

6. The coverage problem

It was originally designed to be interfaced to the
"variable'" system at UCLA. Updated designs have been
issued by students for MSI-level implementation. It now
appears that a reasonably-sized processor could be built
from LSI chips and an interface to a microprocessor system
with disk memory and some form of input/output (possibly
a printing terminal). With the changes in technology,
the cost has become more than reasonable for such a
device.

The original design was for 2 MHz operation. Present
technology would allow a faster clock and therefore faster

operation,
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10.3.2 The Original Design

The first design called for 100 processing registers
that were to be operated in parallel. These were to be
loaded (via software interface to a main system) with the
triadic equivalent of terms from the complement space.
The processor works on the complement to the function,
with the result left in main memory as:

1 = cancelled
0 = implicant or prime implicant

Each register containts the storage for the coefficients
of a point in a 22-variable space stored in triadic nota-
tion. Figure 10.6 presents the original configuration
of the processor and its registers.

Each coefficient is represented by its triadic digit,
and this requires two flip-flop (F/F) elements per digit:

The encoding on the bus is:

H, = 1
¢ Ho=2 _
/ -1 f L =2 Hy = 2
g - By = 1 tor the 1" aigit
m] =? -
R - R—«1 —- H, =D

This requires 44 F/F elements per register or a total of
4400 F/Fs for the register network. 7The details of the
processing registers are diagrammed in Figures 10.7 and
10.8.

The triadic or binary space (depending upon the
algorithm being used) is represented by storing one bit
per point in the space and by addressing this bit via a
triadic or binary "clock" which is encoded in triadic
notation. The bus from the clock contains three signal

lines per digit, with the maximum number of digits fixed
at 22.
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Using the notation of the original paper:

Q= ( (hy* = 0) v ( h, = 1)¢ hy = 23y)

qprev
digit

Implementation of theorem 3.6:

( ( hj* = N@NO ) v ( h, =0 ) for every i )

j

P = Poray * Ny =1)Chg* = 2) + (hy=2)(hyt=1)

digit

Implementation of theorem 3.3:

( hj + h % = NgN3 for every j )

]

Ck = Pk implicant listing

Ck - Pk n Qk prime implicant

P -

———pia — ——-____ho- 1

orev Porev
4 ’ . . " .
I ¢ | . . ’ ’ L] -
. . ’ . ’ . .
| . . I . ¢ ’ ' . ¢ .

ﬁ'
g =1 Q hg* = 1
h, = 2 -
0 h ®# =2 P
O

Figure 10.7. Processing register detail.
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The original design provides for the comparison of
the digits of the bus with each corresponding digit of
each of the 100 processing registers at the same time.
This parallelism of 22x100 effective comparisons produces
one bit of information for each clock step. The bit is
"OR'"d into the appropriate position in the memory.

10.3.3 Improved Parallelism in the Processor Implementatic

The original design provided for up to 22x100 simul-
taneous effective comparisons of triadic digits per clock
step. This may be improved upon with a slight modification
of the processor hardware. The modification is the additic
of logic to the processing registers such that for each
comparison step of the clock, 3jbits rather than one bit
of the result is completed. The clock is then stepped Sj
rather than 30 (triadic or binary clock).

The functions @ *(q) are defined as functlons of the
values of the. lower-order digits of the terms and not of
the clock digits. The clock digits are represented by the
added hardware.

~1 i-2 0
3TN 8T L 4 8
¢q*(Cl) = ¢q* =

1 for h, + h,x =3

= 5 v e

oy : 0O for h; + h =3

. j j*

for every j =0, 1, ... , i-1

- For the case 32, Figure 10.9 provides the map and the
functions ¢q*. Nine bits are produced for the result for
each step of the clock. Figure 10.10 gives the actual
implementation of these functions for one processing
register. Each of the 100 registers would be the same.

Figures 10.11 and 10.12 present the map and func-
tions for a 27-bit result per clock. The hardware trade-
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offs make this version impractical at this.time. If
implemented it would mean 27x100x22 effective comparisons

per clock step.
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Figure 10.9. The functions ¢ for a clock step of 3#%*2,
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The functions: each clock step produces

27 bits of output

& =1

& =NON(hjy=2)

9, =NON( hy = 1)

0, = NON ( h, = 2)

¢, =MNOR(h =2,h,=2)

g = NOR(h =2, hy =1)

b, = NON(h =1)

®, = NOR(h =1, h,=2)

¢g =MNOR(h; =1, hy=1)

g = NON( h, = 2)

%0 ® NOR(h, =2, by = 2)

¢, = NOR( h, =2, hy = 1)

6, =NOR(h, =2, h =2

®, = NOR(h, =2, h) =2, hy=2)
91, = NOR(hy = 2, h) =2, hy =1 )
)5 = NOR( h, = 2, h) = 1)

tyg = NORChy = 2, hy =1, hy = 2)
¢, = NOR( h, = 2, h) = 1, hy = 1 )
9 = BON(h, = 1)

g = NOR( hy = 1, hy =2 )

490 * NOR( h, = I, hy = 1)

4, = NOR( hy = 1, h) =2)

4,, = NORCh, = 1, by =2, b, =2)
855 = NOR(hy = 1, h) =2, hy=1)
¢,, = NOR(h, =1, h =1)

455 = NOR( h, = 1, h; =1, hy=2)
8,6 = NOR(h, =1, h =1, hy=1)

Figure 10.12. The oq* functions for a 33 clock step.
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10.4 APPLICATIONS

Applications of the processor are detailed in the
literature. The following sections will give a rough
outline of the various procedures,

10.4.1 Implicant Listing

To find the implicants of a function, the processing
registers are loaded with the terms of the complement
function, {th}Y (see Figure 10.13). As the h* counter
is incremented from 0 to 3" in steps of 30, representing
points in the triadic space, the registers are‘summed
with a 1 used for any NON3 sum and a 0 used for any sum
containing a 3 (refer to Figure 10.14). The sum results
are OR'd to form one bit of the resulting memory pattern
at address h*. The resulting bit pattern in memory is an
inverse of the desired map, i.e., it contains ako every-
where there is a triadic term implying y. Since the
results from all of the 100 registers at any clock step
are OR'd, it is sufficient for 1 term to form NON3 for
the term addressed in memory to be marked 'cancelled".

The implicant listing application uses the triadic
clock, and the triadic map.

10.4.2 1Implicant Listing Under Improved Parallelism

FPigure 10.15 presents the implicant listing of a
function and details the register contents over the clock
cycle for the case when 9 bits of results are computed
per clock step. (The distinguishment of the "-" and "I
symbols is not represented in the memory bit patterns as
presented. The "+" comes from knowing where the minterm
space appears on the map.) Each clock step is 32 and
each step produces an output equal to one row of the Mar-
gquand map in this example.
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Coes = !
i ...000
processaing
registers
one or more terms forming
""" 120 NON3 NON3 with the clock value

digits ( o ) will cancel

that memory position.

% .....-022 NON3 to # y

Caug = ©
8" ...010
% ...00‘120
3

vt-oonozz F t3+ y
[ 3

terms

15 g
y =X, + §3xl Y=y= §2 ((xy+ §l ) = x3§2 + izil

Figure 10.13. TImplicant listing - example clock step.
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h* Term 1 Term 2 Result
Counter Terms h* + h = NON3 h* + h = NON3 F'(h%*)

000 120 1(120) 1(022) 1
001 022 1 0 1
00 2 1 1 1
010 0(130) 0 (032) 0
011 0 0 0
012 0 0 0
020 i | 1 1
021 1 0 1
022 1 1 1
100 1 1 1
101 1 0 1
102 1 (220) 1(124) 1
110 0 0 0
111 0 0 0
1.1 2 0 0 0
1. 20 1 1 1
121 1 0 1
122 1 1 1 '
200 0 1 l.—T
201 0 0 0
202 0 1 1
210 0 0 0
211 0 0 0
212 0 0 0
220 0 0 0
221 0 0 0
222 0 (340) 1 €248 %) 1
0 1 2 x2

012012012 *

0 lelele ccc]
¢ cancel point 1lejelc cjclel result

2 jc ¢ c c

*3

Figure 10.14. Detail of implicant listing.
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2]--
22-~

( 2100 )
11111111
111111111
000000000
000000000
000000000
000000000
111111111
ISRRREREN!
000000000

Copyright © 2012 WhitePubs Enterprises, Inc.

( 2011 )
110110000
110110000
110110000
000000000
000000000
00000000
110110000
110110000
110110000

y = x3x2 + xaxlxo + X, X, X, + xle

Terms for the registers:

o1 2 e i 2
0
61
2 ) 4 I
a
11
2
I
0
z1
2 I 1
b3k

The final map

Figure 10.15.

310

( 1021 )
110000110
110000110
110000110
110000110
110000110
110000110
000000000
000000000
000000000

Processing registers ( parallel )

( 0120 )
111000111
111000111
000000000
111000111
111000111
000000000
111000111
111000111
000000000

( 2100 ), ( 2011 ), ( 1021 ),

( 0120 )
0 1 2 h
© 1 z|lo 1 2|8 1 2 n;
ol |1 L{r (L LiL!1]1
Svyr gyl
211101 jol1jlo
Ol violol ol 1l
"Yaalalalololol alaly
“til1lolololof 1f1]o
Sy latalatalal alals
2ol | TRy ol
df1f{1joj111]0 0f0O]C
hjhz
Result in memory

Implicant listing.
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10.4.3 Existence Function

The Boolean processor is operated in binary mode for
this application (no triadic term contains a 0). The
processing is done in triadic notation.

The processing registers are loaded with the terms
of Y from each of the equations of the system (100 of them)
as shown in Figure 10.16. The binary counter to correspond
to the memory location being addressed, the counter in
triadic form, is input to bus h*. The processing is the
same as for implicant listing. A "1"is produced for ‘any
term producing a NON3 coefficient sum with the h* bus and
the results of all 100 registers are OR'd into memory.

Upon completion the complement map is stored in mem-
ory. That is, each "0" in memory is a "1" in the exis-
tence function map of the system.

The terms of Y are derived from the equations of y
by the relationships:

(a=Db) = (y =1)
(ab + ab = 0) = (Y = 0)

For example, the first equation of Figure 10.16:
X, = XX,

produces the complement equation:

+ x4x0 + XAX = 0

* I

i%1%0

10.4.4 Larger Systems
10.4.4.1 More terms

Where there are more than 100 terms to be used for
implicant listing, existence function generation, etc.,
then several passes may be made. Each pass through memory
restarts the addressing bus clock h™ at the origin and is
performed with a new set of 100 terms in the registers.
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Figure 10.16. Generating the existence matrix.
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As many passes as are needed may be performed until all
of the terms have been fed through. There is no need to
combine or reduce the Y terms of the various equations
prior to processing.

The ability to reprocess with new sets of terms comes
from the OR'ing function; the result of each pass is OR'd
with that of the preceeding passes.

[ * - x
F'(h™) = F(h™) + Qes

The memory is correctly filled at the end of the final
pass.

10.4.4.2 More variables

Where there are more than 22 variables, the hardware
design is limited. The limitation is due to the memory
requirements. The design has not been extended at this
time.

The memory requirements may be gauged by noting that:

for binary space:

222 = 4,194,304 bits of storage

for trinary space:
314 = 4,782,969 bits of storage

10.5 THE COVERAGE ALGORITHM

The coverage algorithm is a recently developed appli-
cation for the parallel Boolean processor. It is repre-
sented in the last step of the logical instruments solution
to minimization. (The paper defining the application in
detail has not yet been published.)

The solution makes use of two concepts: (1) multi-
licity and (2) coverage. A special counter is also req-
uired for the processor that is capable of counting a O,

1, or more-than-1 condition. Figure 10.17 presents the
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Figure 10.17." Block diagram - Parallel Boolean Processor.
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modified block diagram of the processor.

Multiplicity is diagrammed in Figure 10.18. It is
the production of a count of the number of prime impli-
cants which cover a given minterm. The processing regis-
ters are loaded with the prime implicants found for the

function, The clock bus represents the minterms. The
result bits are formed by checking for NON3 as in the
implicant, prime implicant, and existence function appli-
cations. A NON3 indicates coverage of the minterm on

the bus by the prime implicant in the register. An essen-
tial prime implicant is found when the count of prime
implicants forming NON3 with any minterm is 1. The sum
condition must be recorded for each minterm.

Coverage is demonstrated in Figure 10.19. It is an
algorithm to find the optimum Li-form of the solution for
a function. First, the processing registers are loaded
wilh the minterms of the function and the prime implicants
are sent down the bus. The prime implicants are sorted
based on their status as essential or dominant prime imp-
licants. A NON3 indicates that the prime implicant on
the bus covers the minterm in the register. The prime
implicant is recorded as belonging to the solution and
2ll minterms forming non-3 with it are removed from the
register.

The next step is to send the next prime implicant
down the bus, repeating the above. This process is
repeated until there are no more terms in the register.

This application is based upon the modified form of

Theorem 3.3:
(hy + h; # 3 for every j)
»> [(th* =m )~ (ma'th)l
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Figure 10.18. Map and clock step detail of MULTIPLICITY.
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Figure 10.19.
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10.6 THE BOOLEAN DIFFERENCE
The Boolean difference is defined as:
DiF(x) = F(xo, Xis «ve 5 X
» F(xo, Kys oo s Xyy vve 5 X 1)

(o
DiF(x) = F(xo. Xis vve s
v F(xo, Xy eon

When DiF(x) = 0, v = F(x) is unconditionally
independent of X, -

When DiF(x) 1, vy = F(x) is unconditionally

dependent on X, -
G(x), v = F(x) is conditionally

When DiF(x)
dependent on X, -

The literature previously published on the Boolean diff-
erence also defines operational properties for the diff-
erence.

The function is well documented in the literature
and is used in some methods of minimal or optimum test
set generation.

The Boolean difference has been derived for an exam-
ple function in Figure 10.20 both by computation and by
using a graphical map techique. The map technique shown
uses a Marquand map; previous papers have used Karnaugh
maps.

An alternative map approach, again using Marquand
maps and the example is performed as follows:

1. Map the function y = F(x) (Figure 10.21a).
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=
D

3 o _ s
y = F(x) = X Xo + XyX,

D2F(x) + XX

( XX + X 2 %3 ) ,

9 2¥3 Y ¥ ( xlx

( XX, + x2x3 ) ( ) +x2 )( X, + x3 )

+ (xlx2 + XyXqy ) ( X + Xy ) ( X, + x

1 2x3 + xlxzx3 + xlxzx3 + xlxzx3

3)

>l

= X

= x1x3 + xlx3
a. Computation solution.
*2
™
)
Marquand map of F(x)
| [] ° . X,= 1
2
X4 .
— _._x2
1
L ]
I il %l Marquand map of F(x)
Xy= 0
X
3 :2
1
1T
F +
I S N ( F(x) o B F(x) i D
2 2 Mod 2
x3 b. Map solution.

Figure 10.20. Boolean Difference by computation and mapping.
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2
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Figure 10.21. An alternative map approach.
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2. To find DZF(x) computationally, we may
define

S ¢ 0
D2F(x) = F2 » F2

To find %P consider all points where x_, = 1
to be "don't care''s and minimize the resul-
ting function for gf (Figure 10.21b).

3. To find E; consider all points where X, = 3
to be 'don't care"s and minimize for El
(Figure 10.21c).

4. The two functions, F0 and F1 must be exclu-

2 2.2
sive OR'd together to find D2F(x), which is
accomplished by the modulo 2 addition of

their maps (Figure 10.21d).

This approach was suggested by Svoboda. The choice
of one of these methods over the other is arbitrary,
dependent upon the ease of switching x; with EI and
remapping, versus minimization with "don't care' masks.
The choice of which will be automated has not been made.
The map approach was originally intended for manual use
for cases where n was reasonably small.

A third approach involves the use of '"links'" (defined
in "Fault Detection through Parallel Processing in Boolean
Algebra', Ph.D. Thesis, UCLA, 1976, by D. E. White). A

"link" exists if, for all Xj except the X, in question

i
held constant, a change in X, produces a change in y.
(Figure 10.22a.) This is best seen using the Existence
Function map (Figure 10.22b).

The procedure:

1. Using the Existence Function map, identify
all links for the variable X, .
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Find all links for the variable X
for which the difference is being
sought. This is clearer on the

Existence function map.

%3

|
links on the

¢ *
Marquand map
X
3
o
%)
X1
L ] \ ? /
N <
‘\\» ’//; . links on the
existence function
y

=g

*)
minimized remapped
link points

%3

" The minimized function found from
the points on the Marquand map is
the Boolean Difference being sought.

Copyright © 2012 WhitePubs Enterprises, Inc.

Figure 10.22. Solution with links and the existence function map.
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2. On a new Marquand map, map only those points
bound by links for the variable X, (Figure
10.23¢)

3. Minimize the function represented by these
points to find DiF(x).

Given these methods, it is desired to define algo-
rithms for the parallel Boolean processor. The present
design limitation will limit these algorithms to cases
where n < 22,

Algorithms/routines which already exist for the para-
1lel Boolean processor are referenced but are not detailed
here.

The algorithm for the Marguand map approach first
described:

1. Load a 2" Boolean space with F(X)‘x i
i

2. Load a second 2" Boolean space with F(x)lx =0
: i
(software instruction).
3. Using software to add these maps modulc 2,
load a 3™ triadic space with the result map.

4. Run the implicant algorithm.

5. Run the prime implicant algorithm. The
result is DiF(x).
The storage required for the maps (spaces) is
2™1 4 3™ pits. The algorithm is illustrated in Figure

10.23.
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X
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s 1 . y = F(x)
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X 1
2 X
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— —0
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DlF(x) = Xo%y + XX,
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Figure 10.23, Parallel Boolean Processor algorithm for

implementation of map approach.
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The algorithm for the link approach is as follows:

1. Load the existence function E(y) into a 2n+1

Boolean space.

2. Find the links for the variable X, (this
algorithm is needed for the test sequence
generation and is therefore considered to
exist).

3. Load a 3" triadic space with the linked
points of E(y).

4. Run the implicant algorithm.

9. Run the prime implicant algorithm. The
result is DiF(x).

The storage required for the maps (spaces) is
+ 3" pits.

A simple example has been used throughout this

2n+l

description. The algorithms have, however, been succes-
fully applied to a number of examples of varying complex-
ity, including several published in the literature. A
more complex example is illustrated in Figures 10.24
(Marquand map method) and 10.25 (link method).

These algorithms have been extended for the genera-
tion of the Boolean difference of y with respect to two

variables:
(both)
DijF(x) = F(xl, RN 2 xj, " xn)
F(xl, vee s Xy e xj, , xn)
(either)

Diij(x) - DiF(x) + DjF(x)
(either or both)

D1+3F(x) = DijF(X) + D F(x)

ivj
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y = F(x) = X XoXg + X XX, + X X9 Xs

X
x)
xl
[
| L J [ ]
Fx) x,=1
. s 0 1
] ® [ ] & [ ]
- -
X
3
o
X
¢
] L}
I : F(x) x1=0
® ] ']
| L[} & M) ]
T
XSX4
X4
S5
£
B Modulo 2 of the
l L fJ’AP/
above maps
i T
| /
X5X4

DlF(x) = XgX;XqX, + XX, X, + XgXqX,
Figure 10.24., Parallel Boolean Processor algorithms example.

196



INTRODUCTION TO THE PARALLEL BOOLEAN PRECESSOR

By computation:

DIF(x) =D, C X X, Xq + X XpX, + X X Xg ]
= ( X XXy + X X)X, + X Xy Xs ) ¥ ( X XpXq + X XoX,
+ Xy XoXg )

= ( X XyXq XXX XX ) X, + X, + X, ¥y € X,

1727 125
5 Xy + X, ) ( X + X, + Xg ) + ( X XoXq + xlxzx4

+ x.x.%x_ ) ( §1 + X

1*5%s + x3 Y ( x, + x. + x, ) £ =

2 1 2

x1x2x3x5 + x1x2x4x5 + x1x2x3x4x5 + x1x2x3x4x
+ xlx2x3x4x5 + x1x2x3x4x5 + xlx2x3xS + xlx2x4x5

+ xlx2x3x4x5 + x1x2x3x4x5

= X,Xg ( Xg + X, ) + XoXgXqaX,

Ref: Sellers, et. al. "Analyzing Errors with the Boolean
Difference." IEEE Trans., C-17(4):676-683, July 1968;
correction C-20(11);1245-1251, November 1971,

Figure 10.24, ( con't )
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Decimal index on columns for xsxax X.X
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DlF(x) = x5x4x3x2 + xsxax2 + x5x3x2

Figure 10.25.

The solution with links.
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and may be extended to all n variables. No work has yet

been done to extend them to the partial Boolean difference.

A final example is given in Figure 10.26.
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Figure 10.26. Another example difference from Sellers.
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Figeure 10.26.
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