Firmware Level Intérrubts for the 2900

Dr. Donnamaie E. White

Advanced Micro Devices, Inc.
Sunnyvale, CA :

Interrupt handling at the firmware or
software level is desirable when the
interrupts are recognized under pro-
grammer control. These ‘‘software-
interrupts™ are used in emulations and
basic CPU structures, while real-time
r “*hard interrrupts™ are necessary in
controller environments. Firmware
~ level interrupts for a 2900 Family-based
Computer Control Unit (CCU) or con-
troller can be implemented with a 2914
Priority Interrupt, Circuit (one can
handle up to 8 levels of prioritized in-
terrupts), a 2910 Microprogram Se-
-quencer, registers, PROMs for lmple-
menting a memory map, a vector map
and microprogram control memory.

The instruction register contains the
current machine instruction, or macro-
instruction. The memory-mapping
PROM accepts the instruction register
(IR) opcode portion on its address lines
and produces an output microprogram
address, which is the start address for
the microroutine that implements the
hardware steps to support the opcode.

The vector-mapping PROM accepts
the 2914 priority-encoded vector out-
put on its address input and generates a
mlcroprogram address on its output
lines, which is the start address for the
interrupt routine that will service the
interrupt.

The 2914 accepts up to 8 intenupt
requests encoded by an internal priority
interrupt encoder. The i Interrupts can be
individually masked, ‘in which case
they do not reach the encoder. and in-
terrupts may also be nested under pro-
grammer control. A status fence pre-
vents interrupts (of a pnomy less than
that level curremly in service) from
causing an nmenupt request. Both the
status fence register and the mask reg-
ister may be stored in the main memory
of the system or may be loaded from the
main memory of the system.

Fig 1 shows output enables for the

76 Digital Design MARCH 1981

Data Bus ° i
R { i
- & . -_’,', . . C . eene .. 2920 !
Lok IR -
2729 Ccsp—OE;" 5752'9 RPN
Vector . lapping e
: a---OE 3
Map PROM M - Z
' L - : - T | Start Address e
. Mask, .1y ector Vectored { Branch tLi
Status Any COND, Address .Address ' oIS
L Interrupt I'm IEE N ’,
v 2914 OTHER{ 1 2010 R _
SRR I R 1 I - ,,
. [I. &
] 1)
. — pass el
. . -] Microprogram :
e " "} Address | :
27527 ST R
Registered. S o1
" PROMS J— -
B OEp .
- : —— CLK
= L3 l
- ‘ Output Enables Other™ % * R
Figure 1: Firmware level interrupts for the 2900 series.

- = Sequence

R T B el T et

Contro! —e!e— lnterrupt —_—— Output Enables—{ - .
2910 ' Cond BR Addr/ 2014 _2014 O OF .ot 4
-Inst. Mux. . Counter | INST- INTDIS| pL - Map . Vect | Other .1
Lo K /EN e e . -
. vA ,‘E
4 3 | 12 .| s 1] 1 s

o e P

Flgure 2: The microword conceptual layout

three microprogram address sources:
(1) the branch address/counter field in
the microword of the microinstruction
register (pipeline register for the con-
trol memory): (2) the vector map output
and (3) the mapping PROM output are
all driven from fi elds in the microword.

-262-

NP L

This averages 20 ns faster than sourcing
these signals from the 2910.

The microword for*the structure
shown in Fig 1 is given in Fig 2. The
microword format is shown in a struc-
tured layout, conceptually clear to a
human “reading the microprogram.

From left to rivht the microword ficlds
shown arc: (1 2910 Instruction Field

~ — the 4 bits required for the basic six-
teen instructions (there are more instruc-
tions). (2) Conditional MUX — the
multiplexer used to select which test
input will be examined: a 1-of-8 MUX
is chosen here. Tests possible besides
the ‘ANY INTERRUPT TEST arc
PASS. ALU status (from a status regis-
ter). etc. (3) Branch Address or 2910
Counter — the field used to specify an
address or a value. (4) 2914 Instruction
Field — the basic four instruction lines
plus the Ignline. (5) 2914 INT DIS —
the interrupt disable; used to protect
against interrupts during start-up in
sensitive code areas, etc. (6) OEp. —
oiitput enable for the branch address
field. (7) OEmap — output enable for
the memory mapping PROM. (8)
OEvgcr — output enable for the vector
mapping PROM.

For handling interrupts, several op-
tions are available in the hardware
shown in Fig 1 and the microword in

. Fig 2. Using a typical CPU micropro-
gram structure as shown in Fig 3, the
flow is characterized by the common
microinstruction steps necessary for
each execution; i.e.. load PC to MAR;
fetch next macroinstruction to Instruc-
tion Register and decode the opcode.

 The PC is incremented as part of the
»oC —> MAR step inits ownstep, oreven
~¥as part of the fetch instruction step.
Within this common code sequence,
usually at the completion of the
current microinstruction microroutine,
* a test can be made for the existence of
an interrupt request.
Because the test is at a given loca-
tion. such as the end of a microroutine

i or the beginnng of a common code sec-

b tion. there is no need to use a sub-

routine. All routines return to 2 fixed
address.

The microinstruction sequence is
shown in A.

At the intervupt routine address
generated by the vector map. the inter-

L rupt is first cleared from the 2914 and

acknowledged (if the interrupt is a level
signal rather than a pulse). The end of
the interrupt routine would have an
anceaditional - jump to the common

ey

code sectior. labeled START in the -

code shown in B. :

- ated via a PASS on the muitiplexer
(CC/2910) is active LOW) or via the
CCENpin of the 2910. This method
| ‘ “1ses the multiplexer solution. During

. ¢ start of the routine it may be desir-
able 10 luad or 1o save cither the Mask
Repster. the Swumos Register or both.

t s

i presemmre

Unconditional jumps can be gener-

e T e~e

Figure 3: Sa

- . e mee T s

mple CPU flow form.

At the end of the microroutine, it may
be desirable to restore these registers.
The status register must be lowered as it
is automatically set when the 2914
READ VECTOR instruction is
executed. ' '
Second, if an individual micro-
routine is long, it may be desirable to
test for an interrupt during some
quiescent point within the micro-
routine. This is possible using the
hardware and microword previously
given. The test in this instance would

- - A

2910 COND BR# ADDR

218 -

Load MAR

Fetch instruction

Decode (via memory map)

" 7 Start Address
: from memory
/ . map el e

Individual
Microroutines

Test for interrupt
."and PC PC #1 .

— L eetmepat aie e mhmesiem o Te ce ¥om S o4

be a conditional jump te subroutine
where the subroutine start address is
provided via the vector map. See C.

The subroutine, which would be
similar in its initial and finzl steps to
any other interrupt routine would return
to the calling location via an uncondi-
tional return. See D. '

Nested interrupts are permissable

- with either approach, provided that the

interrupt routine itself tests for inter-
rupts. The stack limit on the 2910 is
five. :

2914

OE, OEyap OFygcr

. INST MUX COUNTER INST T 'INTODIS .
A N .
: CWV ANY # -READ EN EN DIS DIS EN -
- ORcyp S VECTOR S
2910 COND BR#ADDR 2914 _ 2914 - OE, OF,.p OFyecy -
INST MUX COUNTER INST Tg, TINTDIS PL ""MAP TEVECT
. B - - .
©-.CIP PASS START .. # DIS EN EN Dis " - DIS
2910 COND BR#ADDR 2014 . _ @ 2914 _ O, OEgap OFyecr -
. INST MUX COUNTER INST Tgy INTDIS PLTTMAP T VECT ..
Cc — - .
: -Tc)s ANY . #° - READ EN . EN . DIS DIS _EN 7 -
‘“A,- A u.';'v . ,v.‘v'- -VECTOH R e I Lo ’
- 2910 COND BR#ADDR 2914 ~_ . 2914 "BE,, OF,,p OF .
INST MUX COUNTER INST T TINTDIS PLTMAP TUVECT
D . .
_ CRTNPASS _ # - . = -8 pDIS EN ~ EN DIS DIS
- -

e e L e e

T

Figure 4: Micréintruction routines for handling interrupts

