AMD CUSTOMER EDUCATION

BIPOLAR MICF

EI}2§%11Li

DESIGNING
WITH THE Am29116
16-B '
0P

LECTURE
VOLUME [}

ROCESSOR

/

1-00 ED29116 I-00

ED29116

"Designing with the Am29116 16-Bit Bipolar Microprocessor”

by

Barbara Albert
Arndt Bode, Dr. rer. nat.
J.W. Locke, Ph.D.

March 1983

Customer Education Center
Advanced Micro Devices, Inc.

ADVANCED MICRO DEVICES &1

ADVANCED MICRO DEVICES &1

I-10

ED29116

Copyright by

ADVANCED MICRO DEVICES, INC.

9¢1 Thompson Place
Sunnyvale
California 94086

1983

I-19

ADVANCED MICRO DEVICES o1

1-20 ED29116 I-20

INDEX to VOLUME II

Day 2 page
3. Exercises on the Am29116, part 1 3.10
Exercises 3.20
Solutions 3.80

4, Am29116 Bit-Mapped Graphics Controllers 4,10
Introduction 4,20
Drawing a Vector 4.30

Fast Vector-Plotting Algorithm 4.5
Am29116 Microcode for Vector Generation 4.80

- Improving the Vector Algorithm 4,110

5. Application of the Am29116 for intelligent controllers 5.10
Intelligent controller structures 5.15

@ low speed version 5.30
e high speed version 5.110
e comparison with an Am2901 based solution 5.170
e very high speed solution 5.220

- Am9520 burst error processor 5.240

- Microprogramming the controller 5.425

6. Application of the Am29116 for general purpose CPUs 6.10
A Microprogrammed CPU using Am29116 6.20
System overview 6.30
System Organization 6.40
Instruction Formats 6.60
Timing analysis 6.130
Pipelining at the Macro level 6.190
Comparison with Super-16 6.270
o Macro Instruction Execution 6.340
Comparison for 29¢1-29203-29116 solutions 6.430
Performance Analysis 6.450

7. Exercises on the Am29116, part 2 7.10
Exercises (Microprogramming the Am29116) 7.20
Solutions 7.30

ADVANCED MICRO DEVICES £1

ADVANCED MICRO DEVICES £t

3-10 ED29116 3-10

DAY 2

CHAPTER 3

Exercises, Part 1

ADVANCED MICRO DEVICES &1

ADVANCED MICRO DEVICES £t

3-20

ED29116

Exercises -~ Part 1

True or false:

1.

1.

11.

The Am29116 is externally TTL compatible,
but uses ECL ciruitry internally.

. The Am29116 is expandable (i.e. two can be hooked together).
. The Am29116 is for 8-bit or 16-bit intelligent controllers.

. The Am29116 can perform conditional testing

on its status register.

. The barrel shifter rotates 1 to 15 bits

up or down in one microcycle.

. The Am29116 must be used with an Am2904.
. The Am29116 can perform immediate operations.

. The Am29116 has a choice of four input sources to its data

MUX's which in turn provide three ALU inputs, R, S, U.

. The Am29116 can perform three-address instructions.

Fast clock speed is synonymous with high throughput.

The Am29116 can generate remainders up to 16 bits long
from CRC polynomials.

3-20

ADVANCED MICRO DEVICES &V

3-30

ED29116

Exercises - Part 1 (continued)

12.
13.

14.
15.
16.

17.
18.

19.

20.
21.

22.
23.
24,

25.

26.

3-30

The Am29116 always has its ALU output at Y;.

The ALU destinations are RAM, ACC, D-Latch.

Single-operand instructions are PASS, COMPLEMENT,

INCREMENT, and TWO's COMPLEMENT.

D(QE) (D with zero extend) is used
for two's-complement arithmetic.

"R --> Dest" calculates one's-complement,
and "R + 1 --> Dest" calculates two's complement.

The Am29116 can perform NAND, NOR, EXOR in one microcycle.

Shift up can use @, 1 or the QLINK bit as input to the LSB.

Shift down uses @, 1 or the QLINK bit
as the only input choices to the MSB.

Rotate operates in byte or word mode.

Rotate uses the U-input to the ALU.

Load 2" causes a mask (1 in a field of @'s) to be
generated and can be used for loading RAM, ACC.

Read Y-bus, change a bit, output to Y-bus is possible

in one microcycle with the Am29116.

If you perform a bit-oriented instruction on the ACC,

the destination is the ACC or the RAM.

There are 17 possible results when priority encoding a word.

Byte-mode prioritizing ignores bits 8-15.

ADVANCED MICRO DEVICES 21

3-49 ED29116 3-49

Exercises - Part 1 (continued)

27. The Am29116 can perform operations on polynomials
of degree 16 or Tess.

28. 95% of CRC calculations use polynomials with 16-bit remainders.

29. The CRC calculations can be done in a forward or reverse mode.
(i.e. either transmit bit @ first or transmit bit 15 first)

3p. CRC remainders can be calculated in byte or word mode.
31. The status word can be loaded from D, RAM, or ACC.

32. The Z, C, N and OVR status bits can be loaded
without affecting LINK or the user flags.

33. You can set or reset the entire status word.
34. You can set or reset the ALU flags individually.

35. On the Am29116, you can load both the status register
and the ACC in the same microcycle if the RAM is the source.

36. If the status-register enable is high, the status register
is "frozen". That is, no operation can alter status.

37. A1l conditional testing is performed on the stored
values in the status register.

ADVANCED MICRO DEVICES &1

3-50 ED29116 3-50

Exercises - Part 1 (continued)

Fill in or answer:

38. How many bits are in the Am29116 status register?
39. How many conditional tests can be made?

4¢. Can you perform a conditional test during another
instruction? If so, how?

41. Can byte operations be performed in either the upper byte
or the lower byte of a register?

42. Can the Am29116 support a 10® ns microcycle time?

43, List three possible sources for single operand instructions.

44. Can you load a byte into the D-latch?

45, List three possible source pairs for two-operand instructions.

46. Show the content of this register after a word-mode rotate with n=2,

151413121119 9 8 7 6 5 4 3 2 1 ¢
11901010001 1ol0ol

47. Does the Am29116 allow you to rotate R3
and place the result back into R3?

48. Does the Am29116 allow you to rotate R3
and place the result in R7?

49, If there is no active priority request, what result
is produced by a prioritize instruction in word mode?

ADVANCED MICRO DEVICES ¢t

3-60 ED29116 3-60

Exercises - Part 1 {(continued)

5¢0. If bit 15 is active, what result is produced
by a prioritize instruction in word mode?

51. If bit 15 is active, what result is produced
by a prioritize instruction in byte mode?

52. Is it true that the Am29116 is an order of magnitude faster
than the Am29¢1 which in turn is an order of magnitude faster
than the Amz80@® for certain controller-oriented operations?

53. Can the Am29116 be used to do multiply?
If so, outline the required code.

54, Can the Am29116 be used for bit operations?
55. Can the Am29116 be used for rotate operations?
56. Does the Am29116 have an ALU?

57. Can the Am29116 be used to build a CPU?

58. If a mask bit is zero in a ROTATE-and-MERGE instruction, from
which operand is the corresponding bit passed to the destination?

0011 op0l @191 Q110

59. If U =
R =1010 1010 1010 1010
mask = 0101 1010 @110 1001

what bit pattern is produced by a word-mode
ROTATE-and-MERGE instruction with n=47?

60. If the highest bit position with a one is position 7
and the mask is 1010 ypy, what is the result
of a word-mode prioritize instruction?

61. If the highest bit position with a one is position 7
and the mask is 1010 ,py, what is the result
of a byte-mode prioritize instruction?

ADVANCED MICRO DEVICES &

3-70

ED29116

Exercises - Part 1 (continued)

3-70

62. What is the result of loading the complement of 2"?
What type of instruction allows you to do this?

63.

64.

65.

66.
67.

68.

69.

Suppose you want to do a word-rotate down five bit
positions. How do you do this on an Am29116?

What is QLINK?

Can you set and reset the ALU status bits individually
as you can with the Am2994 micro-status register?

Can you set & reset the LINK and FLAG status bits individually?

In byte mode, are all 8 bits of the status register loaded?

Which instructions do not cause the ALU status bits

to be updated?

When are the upper four status bits
(LINK, FLAGL, FLAG2, FLAG3) changed?

ADVANCED MICRO DEVICES &

3-80 ED29116 : 3-80

Exercises - Part 1

SOLUTIONS

ADVANCED MICRO DEVICES &1

ADVANCED MICRO DEVICES &1

3-99 ED29116 3-99

Solutions for Exercises - Part 1 (continued)

1. True
2. False

3. True - almost every instruction operates in byte or word mode.

4. True - using either the instruction lines Iy - I4 or the
Ty - Ty lines.

5. False - the barrel shifter only rotates up 1 to 15 bits.
An effective down rotate is achieved by choosing an appropriate
number of bits to rotate up such that the result is equivalent
to the desired down rotation.
(16-i in word mode; 8-i in byte mode)

6. False - but an Am2994 is useful for emulations
because of its bit-settable status register.

7. True - requires two microwords and two microcycles.

8. True - ACC, D-Latch, RAM
and the instruction lines (for immediate data).

9. False - the Am29116 can be extended only to a two-register-address
structure (using an external MUX, an additional 5-bit
microinstruction field and extended timing).

1¢. False! - recall the problems that occur on branching with a

double-pipelined CPU based on Am2919 & Am29¢l or Am2903
and the need for extra NOP instructions.

11. True

ADVANCED MICRO DEVICES &

3-100

ED29116

Solutions for Exercises - Part 1 (continued)

12.

13.

14.

15.

16.
17.

18.

19.

20.
21.
22.
23.

24.

25.

26.

True if_ﬁfy is enabled. Otherwise, false.

3-100

True with reservations - the D-latch can be used but
requires some tricky timing. You could generate a race
condition if the D-latch is also a source for the
operation. The D-latch is not intended to be a
destination, and its use as such is not recommended.

"Normal" destinations are RAM, ACC or NONE.

True. (PASS is another term for MOVE).

False - D(SE) (D sign-extended from bit 7)
is used for two's complement arithmetic

True

True

True - shift uses the ¢, 1 or QLINK. The inputs to the carry MUX
should not be confused with the inputs to the shift MUX.

False - QC, QN®QOVR and QLINK are also available.
Do not confuse the use of Q in the Am29116 context
(designating status-register contents) with the
Q-shifter or Q-register of Am2901, Am2993 and Am29203.

True

True

True - also goes to internal Y-bus

True - be careful with the timing

False - ACC only.

BONR instruction has common socurce/destination field.

True - none and 1 thru 16.

True

ADVANCED MICRO DEVICES i\

3-110 ED29116 3-110

Solutions for Exercises - Part 1 (continued)

27. True
28. True - according to an AMD survey.
29. True

3. False - Word mode only. But short polynomials that produce
an 8-bit remainder can be used.

31. True - the status can also be loaded from immediate data as well.
32. True

33. True

34, False - if you need this use an Am2994.

35. False - this is the one source which precludes
loading both the ACC and the status register.

36, True

37. True

Answers to Fill-in or Answer Section:

38. Eight - Z, C, N, OVR, LINK, FLAGL, FLAGZ, FLAG3

39. There are 12 condition code test signals -
You can test all 8 status bits individually. You can force a LOW.
And you can test 3 combinations: Z+C, NBOVR, (NBOVR)+Z.

49. Yes - by using the T-bus lines as input. This requires a wider
microword to control the T-bus.

ADVANCED MICRO DEVICES &1

3-120

ED29116 3-120

Solutions for Exercises - Part 1 (continued)

41.

42.

43,
a4,
45,

46.

47.
48.
49,
50.
51.

52.

In byte mode, instructions alter only the lower byte.

Yes - Very carefully!

This requires a register between the sequencer and the control
store as well as the pipeline register at the output of the
control store. 125 ns is more easily achieved.

RAM, ACC, D, I, Zero.

No.

RAM - ACC, RAM - I, D - RAM, D - ACC, ACC - I, D -1
Rotate is up only -

1100 1019 o911 ©1¢l n = 2 becomes
0010 1000 1101 0111

Yes

Yes - with an external MUX and care with timing.
Zero.

One.

Bit 15 does not participate in the byte mode.
The result will depend on the content of the lower byte.

Yes it is true. Especially when multi-bit rotation, priority
determination or CRC remainder calculations are needed.

ADVANCED MICRO DEVICES <1

3-130

ED29116 3-130

Solutions for Exercises - Part 1 (continued)

53. Yes - but it was not optimized for this application.

Consider a 16 x 16-bit unsigned multiplication:

i)
ii)

1)

iv)

v)

Initialize the partial product (PP) and a counter to zero.
Increment the counter.

Test the MSB of the multiplier -
If the MSB is a one then: PP+multiplicand --> PP

If count equals 16 then END
else upshift the PP and the multiplier.
(remember to carry from the LSH to the MSH of the PP)

Goto i1i).

Look at the Am29116 instruction set! We can write a better
procedure for the Am29116 than the above.

With the use of the prioritize and the rotate instructions

you can reduce the number of microcycles.
(But now the number of microcycles depends on the multiplier!)

An improved algorithm is as follows:

i)

i)

ii1)

iv)

vi)

Initialize PP and counter to zero.

Prioritize the multiplier & call the result 'prio'.
If (prio = @) OR (prio > (16-counter))

then rotate PP by (16-counter) and END.

count+prio --> count

Rotate PP and multiplier by prio.

PP+multiplicand --> PP

Goto i1).

ADVANCED MICRO DEVICES £

3-149

ED29116

Solutions for Exercises - Part 1 (continued)

54,
55.
56.
57.
58.
59.

60.

61.

62.

63.

Yes

3-149

Yes - The barrel shifter works in the byte or word mode.

Yes - The Am29116 has a 16-bit three-operand ALU.

Yes - but it was not optimized for this application.

The R-operand bit is passed to the destination.

The result is 1011 @0 1110 @911,

The result is 9.

Note: <mask bit i equal to zero> allows participation of
the source bit i in the priority determination.

The result is one.

This clears the nth bit and sets all of the other bits

in the destination. The instruction is:

'BOR1, LDC2NR' or 'BONR, LDC2NA' or 'BONR, LDC2NY'.

Rotate up with n=11. .e. (16-5=11)

example: @000 1111 o@l@l 1010
1101 o000 @111 1010

ADVANCED MICRO DEVICES &V

3-150

ED29116

Solutions for Exercises - Part 1 (continued)

64.

65.

66.

67.

68.

69.

QLINK is the linkage bit for shift operations. It is also

used by CRC instructions to bring in each bit of serial data.

You cannot set/reset the ALU status bits one by one.
If you need this feature, use the Am2904 as an
additional external status logic.

Yes

In byte mode, the lower 4 bits (ALU status) on the
status register are loaded.

NOOP, save-status, test-status _ = __
or any instruction if either of IEN or SRE are high.

The upper four status bits (LINK, FLAG 1, FLAG 2,
FLAG 3) are changed during status set/reset; status load
(word mode only); plus QLINK is updated after each shift

3-150

ADVANCED MICRO DEVICES &1

4-10 ED29116 4-1¢

CHAPTER 4

Am29116 Bit-Mapped Graphics Controllers

ADVANCED MICRO DEVICES &1

4-2¢ ED29116 4-20

Am29116 Bit-Mapped Graphics Controllers

The Am29116 has proved to be very popular amongst designers of
graphics controllers. This is a natural result of the fact that the Am29116
has a very suitable instruction set for the kinds of algorithms that arise in
graphics applications.

We will first discuss this subject in general using the article* by
Chu and Miller as a reference. Then we will examine in detail one of the most
useful procedures for bit-mapped raster scan graphics, the efficient drawing
of a straight vector, and show how this is coded for the Am29116. By taking
both an overall look at the requirements of bit-mapped graphics and by follow-
ing a particular algorithm in detail, we are going to demonstrate why the
Am29116 has been so successful as a graphics controller.

* “Microprocessor Architecture Suits Bit-Mapped Graphics"

by Paul Chu and Warren Miller, Electronic Design, Jan.20,1983 p.143

ADVANCED MICRO DEVICES &1

4-25 _ ED29116 4-25

Am29116 Bit-Mapped Graphics Controllers (continued)

Logical Address to Physical Address Mapping

Display Memory (logical) Bit-Map Memory (physical)

16
«—1 kpixel —] e bits

]
l [+ =z T p
Y 1 kpixel
64 kword Y!
: | PR YT : k4 4
X _ :
16-bit words z
Y
Xl
19-bit 19-bit 16-bit 4-bit
address address address address
Y X Y X!
row# co Tumn# word# bit#

ADVANCED MICRO DEVICES {1

4-26 ED29116 4-26

Am29116 Bit-Mapped Graphics Controllers (continued)

Logical Address to Physical Address Mapping (continued)

The mapping process:

logical row# logical column#
6 bits 10 bits 6 bits 10 bits
e 7,
22K,) x

Rotate Up 6

10 bits 6 bits

Yy 7//

Ignore upper

12 bits
Rotate Down 4
& Merge
Y {
16 bits 12 bits 4 bits
1 Y2 | W X']
physical word address physical bit address

ADVANCED MICRO DEVICES £Y

4-30 ED29116 4-30

Drawing a Vector on a Two-Dimensional Raster Grid

| P
B
@
t3
53
@ @
ty
52
—£® Q
1
. Sl
P
|
j= i=1 =2 i=3 i=4

We would 1like to find an efficient procedure to draw a straight
vector between two points. When given the coordinates of two end points, Pp
and Py, Tlocated on a raster grid, the procedure should set the bits in screen
memory associated with these end points and with a set of intermediate points
closely approximating a straight Tine. We will describe a procedure that works
for 1lines of unit or less slope that selects the closer of the two candidate
points for each increment of 'x'. That is, for each 'i' in the above figure,
the procedure will compare the lengths of 's;' and 't;‘ and will select the
point associated with the shorter length. This procedure can be generalized to
handle lines with slope exceeding unity.

ADVANCED MICRO DEVICES &%

4-49 ED29116 4-40

Drawing a Vector on a Two-Dimensional Raster Grid (continued)

Pg
y=ypt3=yg :
Y3 (-ve)
y=ypt+2 @ —&
Y2
(+ve)
y=yp*l Y @
: 1
(+ve)
Y=Yp
X=xp x=xA+1 x=xp+2 x=xp+3 x=xA+4

- of course at x=xj and x=xg, Y=0

In the above figure we see a successful application of such a pro-
cedure. Since the intermediate points are selected from a finite grid, they do

not lie precisely on the ideal straight line linking Py with Pg. A measure of
the success of the procedure is the value of the Y;'s, the differences between

the y-coordinates of the intermediate points and the corresponding vertical
position of the ideal line.

ADVANCED MICRO DEVICES &1

4-50 ED29116 4-50

An Algorithm for Fast Vector Plotting with an Am29116

For a straight Tine Tinking two points Pn(xp,yp) and Pg(xg,xg):

(YB-YA)X*+XBYa-XpYB
XB=XA

y = y(x) =

Let us define dy=(yg-y,) and dx=(xg-xp). For an arbitrary
point P(xp,yp), not necessarily on this line:

Yp={yp-y(xp)) rdx = -x,*dy+y,-dx-xgyp+xayp

is proportional to the vertical distance of P from the line. We multiplied
the distance by ‘'dx' to obtain a measure of vertical distance that can be
calculated without performing a division. In all further discussion we will
use this scaled measure for vertical distances. Since we will apply the same
scale factor, 'dx', to all vertical distances, this tactic will not affect our
ability to determine which of two points is closer to an ideal line.

A simple vector-drawing procedure is as follows:

. Plot a point at xp,ya.

Increment x by one.

If x > xg then quit.

. Calculate Y, the vertical distance error, scaled by ‘'dx’',
for two points: x,y and x,y+l.

If ABS(Y(x,y)) < ABS(Y(x,y+1)) then goto 6 else y=y+l.
6. Plot a point at x,y.

7. Goto 2.

W N
e s

(8]

This procedure may be referred to as a digital differential analyser
by analogy with numerical methods for solving differental equations. This
procedure has avoided division and multiplication but it still has redundant
arithmetic. Two additions are required for the two Y's, we may have to
perform a two's-complement operation on either or both of the Y's to produce
absolute values and finally a subtraction is required to compare the Y's. We
can compress this procedure further.

We have been choosing the next point based on the sign of
d = ABS(Y]ower)'ABS(Yupper)

(We will now call 'd' the "discriminant" for our problem).

ADVANCED MICRO DEVICES £

4-60 ED29116 4-60

An Algorithm for Fast Vector Plotting with an Am29116 (continued)

But in the situation shown below, Yiower s negative and Y

d = -Yyower-Yupper

and the absolute-value operation is not required.

|
1

@D
|
i

Further the ith discriminant can be obtained efficiently from the
(1'-1)th discriminant. Tovdiscover how, consider the Y's involved:

Yia = -x3.1dy+ ¥j.1"dX-Xgya+xayp
Viower, = =(xi1*1)dyr yj_gdx-xgyptxpyg = Yi_y-dy
i
Yupper_ = '(X1_1+1)'d.Y+(.Y1_1+1)’dx-xByA+xAyB = Y;_1-dy+dx
i
Therefore: d; = 'Y10wer,'Yupper_ = -2Y,_1+2-dy-dx
i i

And since Yg = R = 2.dy-dx

(=8
—
§

ADVANCED MICRO DEVICES &

4-70 ED29116 4-79

An Algorithm for Fast Vector Plotting with an Am29116 (continued)

An efficient algorithm for plotting a straight vector from given end
points with minimal arithmetic can now be based on the use of a sequence of
values of the above discriminant, d. We start with x=x,, y=yp, dj=2'dy-dx.
For each point we check to see if x>xg. If so we terminate the procedure.
Otherwise we set the bit corresponding to x,y in the screen memory. Then we
check the sign of d; and proceed to select the next point and the next dis-

crimininant, d;,.q as follows:

If d; is -ve If dy is tve
X.i = X-i+1 X.i = X.i+1
Yi = ¥j yi = yitl

(i.e. select lower point) (i.e. select upper point)

dyyp = -2Y;+2°dy-dx dj4p = -2Y;+2°dy-dx
= -2(Y;_1-dy)+2-dy-dx = -2(Y;_1-dy+dx)+2-dy-dx
= ds+2°dy = d;+2°dy-2-dx

i.e. djyq = dy*inerl i.e. djyq = djtiner2
where incrl = 2°dy (always +ve) where incr2 = 2°dy-2-dx (always

-ve)

Thus for each point plotted, we require only one addition plus one
increment for ‘x' and possibly one increment for 'y'. This improved procedure
is Bresenham's* algorithm for a straight line. Variations on this algorithm
can be devised to plot circular and elliptical arcs.

Reference: Bresenham,dJ.E. "Algorithm for Computer Control of a Digital Plotter"
IBM Syst. J., Vol. 4, No. 1 (1965), pp.25-30

ADVANCED MICRO DEVICES LN

4-80 ED29116 4-80

Am29116 Microcode for Vector Generation

Let us show the code that implements Bresenham's algorithm in two
sections. First let us calculate the various quantities needed before the main
loop begins.

We start with: Reg Content
ROQ XA
RO1 A
R@Z XB
R®3 yB
We want: Reg Content
R@@ XA
RP1 ya
R@2 | dx=(pixel count)-1
R@3 | incrl = 2-dy --- always +ve
R®4 | incr2 = 2°dy-2°dx --- always -ve
ACC | dy = 2-dy-dx

The code required to achieve this result is:

SOR W,MOVE, SORA, RO & CONT 5oXp --> ACC

TOR1 W, SUBS, TORAA,RD2 & CONT ; dx=xg=xp --> ACC

SOR W,MOVE, SOAR, R®2 & CONT ; dx --> RP2 final dx
SOR W,MOVE, SOAR,R®4 & CONT ; dx --> R4

SOR W,MOVE, SORA,RO1L & CONT] --> ACC

TOR1 W, SUBS, TORAA,R®3 & CONT ; dy=yg-yp --> ACC

SHFTNR W, SHA, SHUPZ ,NRA & CONT 3 2°dy --> ACC

SOR W,MOVE, SOAR,R®3 & CONT ; 2°dy --> RP3 final incrl
TOR1 W, SUBR, TORAA,R®2 & CONT ; 2+dy-dx --> ACC final dq **
TOR1 W, SUBR, TORAR, RD4 & CONT ; 2°dy-2+dx --> R@4 final incr2

* Note: "SHFTR" is used to multiply by two.
The alternative of adding RAM to RAM is not available.

** Note: The particular implementation of the main loop we are about
to discuss requires that 'dp' be adjusted further.

ADVYANCED MICRO DEVICES &1

4-99 ED29116 4-90

Am29116 Microcode for Vector Generation (continued)

Program Flow Chart for Main Loop of Bresenham's Vector Algorithm:

Start

X=Xps Y7Y
é -dxA
dx+1
2°dy
2°dy-2°dx

Count
incrl
incr2

ion

DNEG:

Plot at x,y
d+incrl -->d

DNEG®:
X+l -=> x
-ve +ve
Test 'd!
DPOS: ¢
y+l -=>y
Plot at x,y
d+incr2 -->d
No
et Count =

ADVANCED MICRO DEVICES &t

4-100 ED29116 4-100

Am29116 Microcode for Vector Generation (continued)

The main loop section of the code is as follows:

TORl W,SUBR,TORAA,R(®3 ; -dx --> ACC (final dq)
& CONT
SOR W, INC,SORY,R(®2 ; dx+1 --> Am291Q counter
& IFNOT CT16 & CT LOW & LDCT JUNK ; Forced pass loads counter
& JMPI & OEY ; via "JUMP INDIRECT" path.
DNEG: ; d is -ve

YYYY Instruction #1 of subroutine PLOT ; avoid waste of 1 cycle
& IFNOT CT16 & CT LOW & CJS PLOT+1 ; unconditional CALL

TOR W,ADD, TORAA,RQ3 ; d+incrl -->d
& RPCT DNEG® ; Last pt plotted? Jmp if not.
AAAA Any instruction ; last point has been plotted
& IFNOT CT16 & CT LOW & CJP BRXIT ; unconditional jmp to exit
DNEG®: SOR W, INC, SORR,R®P 3 X+l --> X
& IF CT16 & CT N & CJP DNEG ; Test sign of d, branch if -ve,
; continue if +ve.
DPOS: ; d is +ve
SOR W, INC, SORR,RQ1 3 ytl —=>y
& IFNOT CT16 & CT LOW & CJS PLOT ; unconditional CALL
TOR W,ADD, TORAA,RQ4 ; d+incr2 -->d
& RPCT DNEG® : Last pt plotted? Jmp if not.

BRXIT: XXXX ; The vector is now completely drawn. Exit from Bresenham.

PLOT: : Hardware-dependant routine to plot point at RGO ,RO1
YYYY First instruction of PLOT subroutine
& CONT

PLOT+1:ZZZZ Second instruction of PLOT subroutine

LLLL Last instruction of PLOT subroutine .
& TFNOT CT16 & CT LOW & CRTN ; return to caller of PLOT/PLOT+1

ADVANCED MICRO DEVICES £X

4-119 ED29116 4-119

Am29116 Microcode for Vector Generation (continued)

Improving the Vector Algorithm:

The above implementation of Bresenham's algorithm can still be
improved. As it stands, the code manipulates the logical addresses, 'x' and
'y', and then plots each point by a procedure ("PLOT") that must convert these
address coordinates to physical coordinates. It would be better to work with
the physical addresses directly and hence shorten "PLOT".

Suppose the physical address consists of a word address,'W', and a
bit address, 'b'. Suppose further that 'b' is represented by a word, 'B',
that has a single bit set in the bit position corresponding to 'b'. Then the
algorithm can be modified as follows:

1. Replace 'y+l --> y' by:

W+(# of pixels per line) --> W ... usually add 2" via 'BOR2 AZNR'
(*b' does not need to be altered)

2. Replace ‘'x+l --> x' by:

Rotate B up one.
Then if this rotation sets the sign bit,
conditionally: ‘'W+l --> W’

If the code is altered to manipulate 'W' and 'B' in this manner,
then the subroutine, "PLOT", receives the address of the word in the screen
memory to be modified, along with the bit bit mask with which to set that
word. This shortens "PLOT" by at least 4 cycles. The implementation of this
improvement is left as an exercise for the reader.

ADVANCED MICRO DEVICES &t

5-19 ED29116 5-10

CHAPTER 5

Intelligent Controllers Based on Am29116

ADVANCED MICRO DEVICES o

5-15 ED29116 5-15

A Typical Peripheral Controller

INPUT-STROBE o
vosT - OUTPUT-STROBE - . SEPARATE DATA
WRITE PROTECT — SEPARATE CLOCK PULSE
COMPUTER INTERRUPT REQUEST T READ DATA.
__INTERRUPT ACKNOWLEDGE — MRITE DATA -
WRITE-GATE I E———
STEP o
ST o] OISK - DIRECTION | PISK
ADDRESS CONTROLLER . ERROR DRIVE
| ‘ ERROR RESET .
g TRACK 0 T
REQUEST . READY
ACKNOWLEDGE - e INDEX
MEMORY wwrreneno DRIVE SELECT (4)

BLOCK DIAGRAM OF A TYPICAL PERIPHERAL CONTROLLER

ADVANCED MICRO DEVICES £1

ADVANCED MICRO DEVICES i

5-20 ED29116 5-20

Peripheral Controllers

The functions of a peripheral controller may include:

e Parallel transmission of data and address information
between the host computer and the device being controlled.

e Detection and execution of commands from the host.

® Provision of status information to the host
indicating the state of the controller and the controlled device.

8 Serial transmission of data to and from the controlled device.

@ Generation and testing of status, command and timing bits
that coordinate controller/controlled-device interaction.

® Execution of calculations or algorithms related
to the control of the peripheral or to processing data from it.

ADVANCED MICRO DEVICES £t

5-30 ED29116 5-30

Intelligent Controller

Low Speed Version

ADVARNCED MICRO DEVICES &1

ADVANCED MICRO DEVICES £1

5-40 ED29116 5-49

Intelligent Controller - Low Speed

Devices Needed for the Minimum Configuration:

To control the Am29116:
e Am2919 seguencer
@ Microprogram Memory

® Pipeline Register (could be incorporated in a registered
PROM that contains the microprogram)

To control the sequencer:

e 1 1/2 octal D-type flip-flops (Am2920's) forming a 12-bit register
acting as a latch for the direct input to the Am291¢ sequencer

To interface with the host:

& 2 8-bit bidirectional I/0 ports (Am295®'s) connected to the data bus
and providing the data path to and from the host

@ 2 DMA address generators (Am2940's)
to drive the host address bus

@ 1 bidirectional I/0 port (Am295Q)
interfacing with the host control bus
To interface with the peripheral device:

e 2 bidirectional I/0 ports (Am295@'s) conveying status and
command signals to and from the peripheral device

e 1 serial-to-parallel converter for the serial data stream
to and from the peripheral device

@ 1 scratchpad or buffer RAM

And, of course the Am29116

ADVANCED MICRO DEVICES &

5-45 ED29116 5-45

Low Speed Disk Controller

}2 ; 12 12 12
7 (1'/2) Am2320 2[45—7‘-*' (2) Am2950 data bus
12 16 DMA address 16
5 -/ p| generator -~ address bus
0..11 - (2) Am2940
Lt TC AM2910 8 8
e]0..3 YO..H Am29116 474h> control bus
12 R S EUBE e g
addr § microcode Yoous | b (2) An2950 < peripheral
- | u program sl TEN ‘ 16 - 2 .
4 memory WW device
"""""" X1
pipel(;‘nereg. - 8?; MAR / CTR
! l (2) 25L52569
n I scratchpad
‘f 1§ o address
7 7 data RAM
Ok *-and TE*-

control for peripheral devices

*0E
+Ct

m

= output enable
= clock enable

block diagram of a minimal configuration of a disk controller

ADVANCED MICRO DEVICES &1

5-50 ED29116 5-50

Intelligent Controller - Low Speed

Brief Description of Some of the Elements

Am2919 Sequencer

8 an address sequencer intended for controlling the sequence
of the execution of microinstructions stored in microprogram memory

@ capabilities:
- fixed width of 12 address bits
- simple sequential access

- conditional branching to any microinstruction within
its 12-bit 4996-word address range

- incorporates a 12-bit counter for loop control
- provides a 5-level stack for microsubroutine linkage
@ can accept an address from one of 4 sources:

its microprogram address counter

a direct input from an external source

its internal register

its stack

® executes 16 instructions as specified by 4 instruction inputs

& has 5 control pins to control branching, loading
of its register, incrementing of its program counter
and enabling its output bus drivers

ADVANCED MICRO DEVICES LV

5-60 ED29116 5-60

Intelligent Controller - Low Speed (continued)

Brief Description of Some of the Elements (continued)

Am2929 Octal D-Type Flip-Flop

e provides eight edge-triggered D-type flip-flops with

a buffered common clock

a buffered common clock enable

a buffered common asynchronous clear input

three-state output control

e the clear input,CLR, resets all eight flip-flops
independent of all other inputs

@ With the three-state output-enable LOW, all eight outputs
appear as normal TTL outputs. Otherwise the outputs are
in a high impedance state. '

@ The clock-enable input, E; is used to selectively load data
into the register. When E is HIGH the register will retain
its current data. When E is LOW, new data is entered
on the LOW-to-HIGH transition of the clock input.

ADVANCED MICRO DEVICES &t

5-7¢ ED29116 5-70

Intelligent Controller - Low Speed (continued)

Brief Description of Some of the Elements (continued)

Am295@¢ Eight-Bit Bidirectional I/0 Port

e designed for use as a parallel data I/0 port

® provides 2 back-to-back registers to store data moving in both directions
between 2 bidirectional three-state busses

@ provides a handshake-flag flip-flop for each data direction
to allow coordination of demand-response data transfer:

- Each flag flip-flop is set automatically when a register is loaded.

- Each flag flip-flop has an edge-sensitive clear input.

e provides for each register:
- a clock input
- a clock enable

- a three-state output enable

ADVANCED MICRO DEVICES £

5-80 ED29116 5-80

Intelligent Controller - Low Speed (continued)

Brief Description of Some of the Elements (continued)

The DMA Address Generator - Am2940

® High speed, cascadable, eight-bit wide
Direct Memory Access address generator slice

® Generates sequential memory addresses for use in the
sequential transfer of data to or from a memory

e Equipped with

address counter (increment/decrement)

- address register (saves the initial address)
- word counter (increment/decrement)

- word counter register (terminal count)

- three-state address ouput buffers

e 4 control modes

¢ 8 different instructions (3 instruction pins)
- write/read control register (control mode)
- read word/address counter
- reinitialize counters
- load address/word count

- enable counters

@ 3 control pins

ADVANCED MICRO DEVICES LV

5-99 ED29116 5-99

Intelligent Controller - Low Speed (continued)

Brief Description of Some of the Elements {continued)

The Scratch Pad Memory

o Not always necessary for a peripheral controller

e Improves system performance by allowing the host CPU

and the peripheral device to respond at different rates.

® May also be useful in improving the execution speed of
a controller algorithm by providing quick-access storage
for variables or look-up tables. This traffic can thus be

kept off of the main bus.

ADVANCED MICRO DEVICES &1

5-100 ED29116 5-100

Intelligent Controller - Low Speed (continued)

Microword

® 16 instruction bits for the Am29116 that are
shared with the 12 data bits to the Am2919 that provide for

loading the counter and providing branch addresses

e 1 bit to determine the destination of the above lines
(to either the Am29116 or the Am2910). Use the TEN input
of the Am29116 to disable it on those microcycles when the data

on the instruction lines is intended for the Am2910.

e 4 instruction bits for the Am2910

e 3 instruction bits for the Am294¢

® Using this technique of sharing microinstruction fields,
a microword of 28 bits is possible. Of course, there is

a speed penalty caused by the need to halt the Am29116

when data is passed to the sequencer.

ADVANCED MICRO DEVICES ¢\

5-115 ED29116

5-115

Peripheral Controller with Maximal Performance

16

exﬁernal test 12 12 16
< (11/2) Am2920 I >~ (2) Am2950 «Ae-data bus
16
-/ (2)Am2940 - Le~address bus
" 8
THUX poed i cT <% (1)An2950 |=r“Pcontrol bus
— : Am2910 et Y
e o (D VRPN s MUX 7L 16
ool Am29116 <451 (2)An2950]
periheral
——| 5. .15 16 ‘ .
add . 7 ~af A device
res 0.45 1 .
serial-prailell o fm
Y program 3 H_.4 ' ’ converter
memory ~3 TTN
pipelinereg { 4] MAR / CTR
¥ Sl :'""P““; 71 (2)Am25L52569
r--§--1 H 53 '
: —/-J (
E ! 4 12 E Am2904 i scratchpad
o 1
[An2925 |3 £ 13,0 CT[T J8 1 address
' ! 4 ' ' . RAM
hom - J / 1A : IZ,C,N,OVR : data i
4 | A T
711 yi v
Y . 74 -

TE-and TE control
for peripheral devices

biock diagram of a maximal configuration of a disk controller

ADVANCED MICRO DEVICES &1

5-12¢ ED29116 5-120

Intelligent Controller - High Speed {continued)

Additional Elements

¢ 2 multiplexers:
- to define different Am29116 source and destination registers
- to select the branch condition for the Am291@
® Am2925 clock generator and microcycle length controller.
For extended timing required by Am29116 two-address operation.
e Am29P4 status and shift control unit:

- to add more flexibility to the Am29116 status tests

- use only the Am2904 micro status register and its
condition code instructions

ADVANCED MICRO DEVICES 21

5-130 ED29116 5-130

Intelligent Controller - High Speed (continued)

Brief Description of the Additional Elements

Am2925 Clock Generator and Microcycle Length Controller

® General purpose crystal-controlled clock generator/driver
e Has a microprogrammable clock cycle length:
- provides significant speed-up over fixed clock cycle

- meets a variety of system speed requirements

& Generates four different simultaneous clock output waveforms

e One of eight cycle lengths can be selected by the microprogram

e System control functions include:
- run

halt

single-step

initialize

ready/wait

inputs can determine: * where a halt occurs
* the end point timing of wait cycles

e Up to 12 pins can be controlled by the microword.

ADVANCED MICRO DEVICES &1

5-149 ED29116 5-140

Intelligent Controller - High Speed (continued)

Brief Description of the Additional Elements (continued)

Am29¢4 Status and Shift Control Unit

e Designed to perform all the miscellaneous functions
which are usually performed in MSI around an ALU

e It contains three nearly independent blocks of logic:
- multiplexer to generate the carry-in
- 4 three-state multiplexers for shift Tinkage

- 2 status registers for storing carry, overflow, zero
and negative status flags.
These status registers control a condition-test output
via a condition code multiplexer.
A wide selection of condition-code test logic is provided.

In our application only the status registers
and condition-test logic is used.

ADVANCED MICRO DEVICES it

5-150 ED29116 5-150

Intelligent Controller - High Speed (continued)

Brief Description of the Additional Elements (continued)

Am2904 Condition Code Qutput

I3 - 1g Condition Code Qutput
0000 (NBOVR)+Z
2001 (NBOVR)-Z *
0010 NBOVR
0011l NBOVR *
0100 z

9101 z *
0110 OVR

p111 OW *
1000 C+Z *
19001 cz *
1010 C

1911 4 *
1100 C+Z

1101 C+Z *
1110 N

1111 N *

%

9 Condition codes not available at the Am29116 CT-output.

ADVANCED MICRO DEVICES &

5-160 ED29116 5-160

Intelligent Controller - High Speed (continued)

Reasons for the Better Performance of the Second Solution

@ Instruction inputs of the Am29116 and the Dp-11 inputs of
the Am2919 are driven from separate microcode bits.

- allows simultaneous instruction execution in the Am29116 and
direct-address branching in the Am2910

- requires an additional 12 bits in the microinstruction
@ Multiplexer at the CC-input of the Am2919 (controlled by 2 bits)
- allows testing of conditions without loading the signals
into the Am29116
® Ty_g inputs of the Am29116 driven by 4 additional microword bits

- allows simultaneous testing and execution of an Am29116 instruction

@ Use of the Am2904 (controlled by 4 bits)

- improved flexibility in status testing

® Multiplexer at the Iy 4 inputs of the Am29116 (needs 6 bits)
- allows different source and destination addresses in RAM
in the same microcycle
e The Am2925 clock generator/driver

- able to dynamically alter the length of the microcycle

ADVANCED MICRC DEVICES <t

5-17¢ ED29116 5-17¢

Intelligent Controtiler

Comparison with an Am290¢1 - Based Solution

ADVANCED MICRO DEVICES £

ADVANCED MICRO DEVICES ¢\

ED29116

5-175

5-175

*s3Lq U AQ e3ep 34LYys 03 SILJAD u IS ©

*SJA9pUIIXD B L) 493SLBau 3Lg-§ X 97

GOL62WY v YILM J0SSdO04d E£(Z62WY 40 £Q6ZWY

9sn S493SLb6a4 |euoL3}Lppe 404 °3|qepuedx?d
KlLpead 3j0u SL 3nq s4a3sitboaua g1 sey Tpeeuy ©

*403e42udb peaye-)00|-Kuued 2062WY T
pue S9JL|S J0SS9204dOJDLW TP6ZWY # oSN @

UoL3Nn|oS paseg-TPezuy

J913LYs [d4Jeq 3Lq-9T @

saalsibou z2¢ @

yed ejep 31q-97 o
9TT62WY

Saanjesd 9T162uWY

ButurejqQ JO Sueal 93euUJsdILY

ADVANCED MICRO DEVICES £1

5-176

ED29116

5-176

"SuoLjeuado puoM/a3kg sjdoddns A||n} gpzezuy
‘XNW Bel4-snjeqs e yzLm pasn UsyM °3ueiuodur
94e suoljeduado pJoM/93Lg J1 TpezWY ueyz usyled
€0c6oWy 3SO0Y> pLNOYS noj *s3Lg-97 Lo Jogle
LLE3S LLIM Su93SLBau |euudjul uo suotiedadp
"SuoLiouny apow-934Q |eudalxs Jrwdsad || Lm SLYylL :930N

v Pue g S9JL|S 3® Saull snjeis xaldli|ny e

*p pue £ S33L|S J0J
bty A3p asu0y suorjeusdo 934q uL usy
"(A30) s3tq alqeus 1ndyno omy asp e 3POW pJoM/83Ag e

bel4 abejur| ay3 pue
sbel} a|qeutyap-dasn ¢ ayy 404 ro6cwy sug -

UoL3eJ3uab 8pod uoLLpuod pue
(Z°WAO“N®D) sbel) Ny @yl Joj pgezuwy sug -
XNW/403e43uab 9p0o3 UOLILpUOD
S3LUN |043UOD 3JLYS pue SNIeIS HPeZWyY 7 IS © pue J33stbad snieys e

uoLin| oS paseg-1pezuwy 9116wy

(penuL1uod) ssuniead g2y butLutelqQ JO Suedly ajeUILLY

ADVANCED MICRO DEVICES &1

5-177

ED29116

5-177

*suotiedt|dde Auew a0}
K1MO|S 003 93N29X3 | LM °22uanbss
opooouatw Ayibual e Aq pajelnws ag ue)

SUOL]ONUAISULOUD LI [RUABADS YILM d3e|Nnw3

spueuado pajsew ay3l uo ajesado -
pueJado puo2as 3yl jySeuw -
pueJado 3sai} 3Yyiz ysew -
1591242040t 334Y3 IS

S49pooud A3tJotud £16257TGZUWY 3LG-8 OM3 3s(

UoLINL0S paseg-TPezuy

(ponuLiuod) S94n3ead 91T6ZWY bululelqy JO SURSK 93RUJILLY

suoLionaisul JYIJ

SUOL3dNAISUL pajualJo 3Lg

@

@

N 8ys 4o A3rltqeded Burysey e

43p0oud A3tdotdd 3Lg-9T uL-3Ling

91T62uY

@

ADYAMCED MICRO DEVICES &1

5-180 ED29116 5-180

Intelligent Controller - Using Am2901

Brief Description of the Additional Devices

Am2991 4-bit Microprocessor Slice

& High-speed cascadable element for use in

- CPU's

peripheral controllers

programmable microprocessors

numerous other applications

t

@ Consists of:
- a 16-word by 4-bit two-port RAM
- a high-speed 8-~function ALU
plus shifting, decoding and multiplexing sections
@ Cascadable with eijther:
- simple ripple carry propagation

- the Am2992 look-ahead carry generator

6 Produces 4 status flags (N, OVR, C, Z)
® accepts 9-bit microinstructions:
- 3 bits select the ALU operand source
- 3 bits select the ALU function
- 3 bits select the ALU destination
@ accepts 8 bits to select the two RAM addresses

e accepts 2 control bits (OE and carry-in)

ADVANCED MICRO DEVICES &t

5-190 ED29116 5-199

Intelligent Controller - Using Am2901

Brief Description of the Additional Devices

Am2902 High-Speed Look-Ahead Carry Generator

@ Provides anticipated carries across a group of four binary ALU's

@ Accepts up to 4 pairs of carry Propagate and carry Generate
signals from an ALU and one carry input.

With ALU operands A and B and an addition operation:

P =P3P, P Py G = G3tP3 6,*P3 P, 61+P3 P, Py G
Pp = Ag*Bp Gp = Ap'By
P1 = Ap*By Gp = A"B1
Py = AptB Gp = Az"Bp
P3 = A3tB3 G3 = A3"B3

e Also provides carry-propagate and carry-generate signals
to use for further levels of look-ahead.

e Logic results provided at the outputs are:

Cnex = Gp*Pp Ch

Cnty = G1*P1 Gp*P1 Py Cy

Cpyp = Gp*Pp G1+Pp Py GgtP P Py Cy
6 = G3tP3°GytP3 Py Gy +P3 Py Py Gy
P = P3Py PPy

ADVANCED MICRO DEVICES &1

5-209 ED29116 5-200

Intelligent Controller - Using Am29¢1

Brief Description of the Additional Devices

Am25L52513 Three-State Priority Encoder

@ Encodes eight lines to three-line binary

@ Three-state outputs

- controlled by three active LOW and two active HIGH inputs

@ Cascadable

- provides an input enable and an output enable
to permit cascading without additional circuitry

ADVANCED MICRO DEVICES £t

5-205

I
I1q

I3
I12

I
I1o

v18

Building a 16-bit

ED29116 5-205

Priority Encoder from 2 AM25L52513

g
(e

Gy oVec

ADVANCED MICRO DEVICES &%

5-210 ED29116 _ 5-210

Intelligent Controller - Using Am2901

Thus we have seen that it is rather hard to build a controller
with the same features as the AM29116 from parts with a lower

level of integration.

On the next page we see a simple disk controller

based on a pair of Am290lA's.

ADVANCED MICRO DEVICES i\

5-215

ED29116

5-215

A Disk Controller built around Am2901's

0Er-HdW

SINIWNDISSY L18 3000DUIW

I R A
o
_ 5 | 2 1 3 -SRI S R I 11T I R N A
> & = 2] v A o z
a 4 a
_ 3 | | _ P _ _ |
L ! | { 1 | 1.1 | | {
| TN D A PR USRI ORI O N U OO A
[] [TRETY SU St ¢t 8l 61 0Z €2 w 6z €z SE o€ L€ ec 6L Wy wosy o
L A vl
Haqy u8 430N3ND3S _p 7
€ D $3003
NO!LIONOD
R 4
/l N
3 7 5
$SIHAQY AHOWIW
T Tt ——— IDYINOD AXIBY 104
H1SNI LLBGZWY ONY 133735
3002 NOLLIQNOD
H3ILSIDIH WYHODHADUIW
any
;13
4 N
77 3 -;7
€ B ®] o
A SL9RISNEW v
N
8
HILSIDIY JLIHM WY
anv
I0v4M3LNI SNBING SHILSIDIY SIS ¥ 1IN
TOHLINDD [4 9L viva 81 $53¥0Qv q0Y¥INOD z 81 viva 81 $5340Qv
SNBINA

ADVANCED MICRO DEVICES &1

5-217 | ED29116 5-217

The Microword for the 2901 - Based Solution

- 48 bits wide
19 bits Am2901 instruction (M47 - M37, M35 - M28)

- 3 bits function select (FCN)
bits source (SRC)
bits destination (DST)

]
- w w

bits A port register address

- 4 bits B port register address

-1 bit carry in (CN) |

- 1 bit output enable (OE)

8 bits M-bus control (M27 - M20)

- 4 bits bus source (BUS SRC)

- 4 bits bus destination (BUS DST)

11 bits sequencer (M36, M17 - M8)

4 bits Am2911 instruction (SEQ INSTR)

4 bits condition code select (TEST)

1 bit polarity of CC (POL)

2 bits to determine the page of microprogram memory

8 bits data (M7 - MO)
2 bits additional control (M19, M18)
- 1 bit dincrements MAR (INC MA)

- 1 bit dinitiate data transfer (TRAN)

ADVANCED MICRO DEVICES 1

5-220 ED29116 5-220

Intelligent Controiler

Very High Speed Solution

ADVANCED MICRO DEVICES &%

ADVANCED MICRO DEVICES oV

5-230 ED29116 5-230

Intelligent Controller - Very High Speed

Some General Considerations

® Interface-signal names, polarities and functions
used here are similar to those used in the current ANSI
standard for hard-disk drives.

e The methods and functions discussed here can be used for most
current hard- or flexible-disk drives.

@ With minimal external logic, this controller uses an Am29116
and an Am9520 burst error processor to perform all of the
functions needed to:

- write and read at 30 Mbits per second
- format a disk

Including:

searching a track for a specific header and sector

managing data flow through a high-speed buffer memory

generating modified Fire-code check bits while writing

detecting and correcting single and burst errors on reading

generating and checking of CRC's in sector headers

ADVANCED MICRO DEVICES &1

5-24@ ED29116 5-240

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor

Distinctive Characteristics:
@ Provides for detection and correction of burst errors:
- detects errors in serial-data blocks up to 585K bits long

- allows correction of error bursts of up to 12 bits long

e Effective data rates up to 20 Mbits per second:

- fast enough for high-performance hard disk systems

® Four selectable industry-standard polynomials:
- popular IBM 56- and 48-bit polynomials

- also 35-bit and 32-bit polynomials

@ Three correction algorithms provide flexibility:
- full-period clock-around method compatible with current practice

- Chinese Remainder Theorem method reduces correction time
by orders of magnitude

- reciprocal polynomial method for correction

with the 48-bit IBM code

e Designed for use in disk controllers and communication systems
based on fixed-instruction-set or microprogrammed processors.

ADVANCED MICRO DEVICES ¥

5-245

ED29116

5-245

Am9520 Burst Error Processor

SHAAIAIG

IVINONATOd 318v10313S

XIH1vIA 3AIALQ

VANIVAN

IVIWONATOd
(0471-€d1) NYILLVd \ _
HOHYI GILVIO0T 7~ AVHHY
4318193y
(Op-Lp) va
1N0 viva 75

U

SHOLINOW HOLYW N43L1vd

(nd-Ywd) HOLYW NYIL1Vd AHW
£

{d3) NH3Livd BOHHI

HOL123130a NY311vd 4OHH3

(3v) NOLLETDXI INTWNDITVY

HOLINOW LNIWNOITV

(43) HOUY3

NOILO3130 Od3zZ

J1901 SNiivls

J1901
TOHLINOD

a4 |

J0p

SSA

(Og-La)
NI V1va

{0s-is) 1237138
IVIWONATOd

(0d4-£4) TOHLNOD
L13IHS TYIWONATOd

(d34) NH31L1vd
HoYd3 av3d

(02-22) 1237138
NOILONNAS

(d2) 3010
(uw) 13534

ADVANCED MICRO DEVICES £1

5-250 ED29116 5-250

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Functional Description:

e Register Array
- consists of 56 flip-flops used for
. check-bit computation during write operations
. syndrome computation during read operations

. error pattern extraction during error correction operations

e Polynomial-Divide Matrix:
- establishes interconnections and feedback for a group
of shift registers such that an entire byte of data
is divided in a parallel operation by the selected polynomial

- the matrix is controlled by 2 Polynomial Select
and 2 Function Select inputs

- the data is presented to the matrix a byte at a time
on 8 data lines
¢ When correction operations are complete, the error
pattern is available on 12 outputs:

- eight bits on the Qy-Qy outputs

- four bits on the LPy-LP3 outputs

ADVAMNCED MICRO DEVICES &1

5-260 ED29116 5-260

Intelligent Controller - Very High Speed (continued)

An9520 Burst Error Processor (continued)

e Write:
- While the data is being written, the Am9520 is in the

Compute-Check-Bits mode, calculating the polynomial remainder
without affecting the flow of data to the disk

- After the last data byte, the Am9520 is switched into the
Write-Check-Bits mode, outputting the 4, 5, 6 or 7 check bytes.
- These check bytes constitute additional information
to be appended to the data stream to allow detection
and correction of errors on reading.
e Read:
- Two modes are available when reading: Normal and High Speed

- The two modes use different correction algorithms.

- After the last information byte has been read, the state of
the ER output signal indicates whether an error has occured.

ADVAMNCED MICRO DEVICES £

5-270 ED29116 5-270

Intelligent Controller - Very High Speed (continued)

Am952® Burst Error Processor {(continued)

@ Correction:

- After the read operation, the syndrome in the register array
contains information specifying:

* the location of the error

* the bit pattern of the error

¢ Normal Correction Mode:

- The error location is found by counting the number of clock
pulses required to make the EP output go HIGH.

- The error pattern available on LPy-LP3 and Qp-Q; can
be Exclusive ORed with the data to effect the correction.

® High-Speed Correction Mode:

- The error location is found by counting the number of clock
pulses required to generate an indicator for each of the
2 or 4 factors of the polynomial.

- The error pattern available on LP@-LP3-and Qp-Q7 can
be Exclusive ORed with the data to effect the correction.

- While there are more steps to the high-speed-correction procedure
than are required by the "Normal" procedure, the correction is
accomplished far faster.

- The high-speed correction method is not available for the 48-bit
polynomial.

- For the 56-, 35- and 32-bit polynomials,
the high-speed method should be preferred over the “"normal method".

ADVANCED MICRO DEVICES &t

5-280 ED29116 5-280

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Computing Check Bits:

@ The Polynomial Divide Matrix and the Register Array implement
the familiar serial form of feedback shift register arrangement
in an 8-bit parallel form.

@ The $1 and Sy inputs select one of 4 polynomials:

Degree & Correctable
Polynomial Number of Period Burst Error
Check Bits] (Bits) Length (Bits)

(X22+11 ° (X11+X7+X6+X+1) .
(L2ex1l4y10s | 4ya1)- 56 585,442 11
(x1LaxF4x7+x0+x54x+1)

(x2L41) - (x114x241) 32 42,987 11
(x23+1)'(x12+x11+x8+x7+x3+x+1) 35 94,185 - 12
(x1341) - (x354x234xBix41) 48 13+(235-1) 7

=4.466. . .x1p11

@ When the last data byte has been read or written, the Register Array
contains the check bits.

e Remember to select the same polynomial for reading as was used for writing.

ADVANCED MICRO DEVICES &V

5-290 ED29116 5-290

Intelligent Controller - Very High Speed (continued)

Am952% Burst Error Processor (continued)

Computing Check Bits (continued)

® Sequence of events to compute the check bits
i) The clock input,CP, should be in the quiescent HIGH state.

ji) Initialize by activating the master reset input, MR, LOW
and return it to HIGH.

jii) Specify the desired polynomial via S®’ 514
Apply zeroes to Cp-Cy to select Compute-Check-Bits mode.

iv) Establish a byte of data on Dy-Dy inputs.
v) Make the clock input go LOW then HIGH.

vi) Repeat from step iv) until all data bytes are entered.

ADVANCED MICRO DEVICES &1

5-300 ED29116 5-300

Intelligent Controller - Very High Speed (continued)

Am952¢ Burst Error Processor (continued)

Write Check Bits:

6 When the Write-Check-Bits mode is established, the feedback
paths of the register array are disabled and the check bits
may be shifted out.

@ Checkbits are available on the Qu-Q7 outputs one byte at a time.

e Sequence of events to obtain the check bits:
i) The clock input, CP, should be in the quiescent HIGH state.
ii) Select the polynomial via the Sp,5; inputs.
iii) Force C»,C;,Cp to LOW LOW HIGH (Write Check Bits).

iv) After a propagation delay the Qg-Q7 outputs will
contain the, first check byte.

v) Make the clock input go LOW then HIGH. The next check byte
will be available on the Q®-Q7 outputs.

vi) Repeat from step v) until all check bytes are read out.

ADVANCED MICRO DEVICES L%

5-310 ED29116 5-31¢

Intelligent Controller - Very High Speed (continued)

Am952% Burst Error Processor (continued)

Read - General:

e The input stream (data and check bytes) is divided by the
selected polynomial to obtain the syndrome.

@ A non-zero syndrome indicates an error has been detected.
If the syndrome is not zero the ER output will be HIGH.

e Two methods for error correction are available:
- full-period clock-around ("Normal")

- Chinese Remainder Theorem ("High Speed Method")

¢ There is a different read procedure for each of these methods:
- Read Normal: produces one syndrome

- Read High Speed: produces as many syndromes as the
number of factors in the polynomial.

The input stream is simultaneously divided by all of the

factors of the polynomial. The ER output indicates
whether or not all syndromes are zero.

® Read High Speed is not available for the 48-bit polynomial

ADVANCED MICRO DEVICES oY

- 5-320

D —

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Read Normal:

e Sequence of events for Read Normal:

i)

ii)

i11)

iv)

vi)

vii)

viii)

The clock input should be in the quiescent HIGH state.

Initialize by pulling the master reset, MR, LOW
and then returning it to HIGH.

Select the required polynomial via S®,Sl inputs.
Apply LHL to C,,Cy,Cp to select Read Norma15

Present a byte of information as read from the disk
to the Dg-Dy inputs.

Make the clock go LOW then HIGH.

Repeat from step v) until the last check byte read
from the disk is processed.

Test the ER output:
- ER HIGH: an error has been detected.

- ER LOW: no error has been detected.

ADVANCED MICRO DEVICES &1

5-330

ED29116 5-330

Intelligent Controller - Very High Speed (continued)

AmS52% Burst Error Processor (continued)

High Speed Read:

® Sequence of events for Read High Speed:

i) The clock input, CP, should be in the quiescent HIGH state.

ii) Specify the polynomial via the Sy,S; inputs.

iii)

iv)

v)
vi)
vii)

viii)

Apply LHH to Cy,C1,Cp to select Read High Speed.

Initialize by pulling the master reset, ﬁﬁ, LOW
and then returning it to HIGH.

Present a byte as read from the disk to the Dy-D7 inputs.
Make the clock go LOW then HIGH.

Repeat from step v)‘until the last check byte has been read.
Test the ER output:

- ER HIGH: an error has been detected.

- ER LOW: no error has been detected.

ADVANCED MICRO DEVICES it

5-340 ED29116 5-340

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Function Select Codes

Cp 0 Cp ~ Function

L L L Compute check bits
L L H Write check bits

L H L Read normal

L H H Read high speed

H L L Load

H L H Reserved

H H L Correct normal

H H H Correct high speed

ADVANCED MICRO DEVICES &%

5-350 ED29116 5-350

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

i

Correct Normal:

@ The Am9520 manipulates the syndrome to yield:
- error pattern (at Q®-Q7 and LP®-LP3 outputs)
- error location (needs further external computation)
@ Syndrome is repeatedly divided by the polynomial until
the error pattern is located:

- done by repeatedly clocking without regard to the Dp-D7 inputs
until EP goes HIGH

e If the AE output goes HIGH while the EP output remains LOW,
an alignment exception has been detected.

@ Count clock cycles (#C) until EP goes HIGH.

e If #C > (period of polynomial) then the error is uncorrectable.

ADVANCED MICRO DEVICES &t

5-360 ED29116 5-360

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Correct Normal: (continued)

& Use two external counters (Rl, R2)
- R1 counts the number of cycles until AE goes HIGH

- R2 counts the number of cycles from AE geing HIGH
to EP going HIGH. (= @ if no alignment exception)

e If R1+R2 > (period of polynomial) then the error is uncorrectable.

e (N‘K - 8°Rl - R2) gives the location of the first bit in the
error burst counting from the last check bit of the record
for the 56-bit and 32-bit polynomials.

(N°K - 8°Rl - R2+5) gives the location of the first bit in the
error burst counting from the last check bit of the record
for the 35-bit polynomial.

where:
K is the smallest +ve integer that makes this expression +ve.

and N is the period of the polynomial.

Note: The 48-bit polynomial uses another correction algorithm.
See specification sheet for details.

ADVANCED MICRO DEVICES ot

5-370 ED29116 : 5-37¢

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor {continued)

Burst Error Processor (continued)
Correct High Speed:
¢ This mode allows you to determine the error pattern
in far fewer clock cycles than dqes the "Normal" mode.
- A polynomial with m factors with periods P1sPoyeess Py

will correct in no more than the following number of
of clock cycles:

. In Normal mode: Pi*Py ... °Pm i.e. the product of the P's

. In High Speed mode: Pq+Pp+ ... +P, i.e. the sum of the P's

@ Number of syndromes equals the number of factors of the polynomial.

@ Refer to the table a few pages back which shows the factorization
of the polynomials.

As we have written the factors, the first factor has a special
signifigance. The degree of this first factor determines the
maximum length of an error burst that is still correctable.

ADVANCED MICRO DEVICES o\

ED29116 5-380

5-380

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

e The error location is given by:

* AgM)

L = N°K - (AIM1 + A2M2 + ...

Where N is the natural period of the polynomial.
K is the smallest integer that makes L positive.
M; are the numbers of clock cycles required to match
the error pattern of each factor.
and A; are the Chinese Remainder Theorem coefficients:

Polynomials Al A2 A3 A4
56-bit 452,387 | 578,864 | 2,521,904 | 2,647,216
32-bit 311,144 | 32,760 -- -
35-bit 32,760 | 720,728 - -

ADVANCED MICRO DEVICES &1

5-390 ED29116 5-390

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Correct High Speed (continued)

e To determine M; and the error pattern use:
- PQ-P3 inputs to select the register section to be clocked
- PMZ—PM4, the "pattern match" outputs:
When PM; is HIGH then the syndrome; shows a match
with the error pattern.
@ For Ml: use the polynomial-shift controls to select
register-section #1 (Pg,Py,Pp,P3 - HLLL).
Use the same procedure as in the correct normal mode.

- If R1+R2 > (period of factor #1) then error is uncorrectable.

- If error js correctable then M1l = 8R1 + R2Z

® The M; will be determined after M1 but slightly differently:
- Select the jth register section via P3—P@
- While PM; is LOW clock the 9520 and increment a counter

- If the count exceeds the period of this factor the error
is not correctable.

e When EP and all PM;'s associated with this polynomial are HIGH,
then the error pattern and error location are determined.

ADVANCED MICRO DEVICES ot

5-400 ED29116 5-400

Intelligent Controller - Very High Speed (continued)

Am9520 Burst Error Processor (continued)

Am952¢ Polynomial Periods

Period Period Period Period Composite
Polynomial | Factor 1| Factor 2 | Factor 3 | Factor 4 Period (N)

56-bit 22 13 89 23 585,442
32-bit 21 2047 -- -- 42,987
35-bit 23 4995 -- - © 94,185

Note: The 48-bit polynomial requires the use of
a different correction procedure and is not shown here.

ADYANCED MICRO DEVICES {1

5-405

ED29116

5-405

ADVANCED MICRO DEVICES {1

04 tal td £dn 9o ‘o 4+] o} Yo So % Lp
1SHNS d3133HHOD
T e e e e — +
.
154NY HOYH3 .
4 __1 } i
b — b
ua una ng
MOIHD ¥33HO | viva »mmz%m <w_w.u
1SV ISHH | 1SV
NI938 1SHIA
4 T { iy
- sug . {}
NOAHD I viva

Qqyo03d
{NO1LYDO HOHHI Q3LNdWOD} 1 _

Error Pattern Format for 56-Bit, 35-Bit and 32-Bit Polynomials

5-497 ED29116 , 5-407

Data Path for Very High Speed Controller

not detailed

here ‘
drive
An2910 roct /*/,//”
micro- <:; . -a——— status Za——— BEP (burst error prosc.)
host memory sequencer multiplexer
% FIFO

N

data channel

78

"‘::::: :> drive
control

Am27535
microprogram

egister

differential
16-bit control bus write control

differential
write data

\/ \/

3
)
?
1
1
1]
DMA or data : Am29116 Am2920 Am9147 Am9520 time-division
'
1
]
[
1

channel inter . |buffer memory buffer burst multiplexed < read
micro :::::::> error data

face register memory

address

2940, Am2950

controller register processor 16x16 FIFO
read
S Et = I VN (R (I
s
Q 16-hit internal data hus >

ADVANCED MICRO DEVICES &1

5-410 . ED29116 5-410

Intelligent Controller - Very High Speed (continued)

System Organisation:

@ Interface to the disk drives:
- bit-serial data paths for read and write
- byte-parallel paths for
. commands
. disk addresses
. disk status
¢ An2910 sequencer and Am27S35 registered PROM microprogram
memory drives 76-bit control bus:
e Data flow is:
- asynchronous & serial at 30 Mbits/sec from drive to a FIFO array

- 16-bit clocked & parallel from the FIFO array to the buffer memory
at 20 Mbits per second via the internal data bus.

e The BEP is located on the internal data bus.
@ Disk read:
- Data is read into the FIFQ array at 39 Mbit per second.

- Concurrently, the data is transferred from the buffer memory
to the BEP at a rate of 15 MHz.

& Disk write:

- The BEP pre-calculates the check bits before the write. There is
not enough time to overlap BEP/buffer and buffer/FIF0 transfers.

ADVANCED MICRO DEVICES &1

5-420 ED29116 5-420

Intelligent Controller - Very High Speed (continued)

Microinstruction Format

e 80-bit wide microinstruction

- This is not a minimum width, but it demonstrates
microcoding in a straightforward manner.

e Sample microcode for uncompressed sector read/write
operations is available including: '
- header and sector searching
- error checking of the header via Am29116 CRC instructions
- error checking and correction of the data segments

via Am952¢ and its 56-bit modified Fire code polynomial

e The sector input/output microroutine (SECTIO) performs input
or output of a single 256-byte sector.

ADVANCED MICRO DEVICES &1

5-425

ED29116

5-425

Aedde 0414 Ye@Pys Woul sng (Auowsly a|qeu

(suotijeuado uoLssaudwod ejep ul papasu WOoUd S3eSued]
WOdd °3e|sued] wod} sng (Aaowsy 3|qeul

L e N

sng 1043uo0) (®ALJ4Q YSiQ) wou4 sng (Kaouwal 3| qeu]
[043UO] NJeW SS3JUPPY

A3Lae|od B UOL1D3]|3S XNW 3p0J-UOL]LpuUO)
Indul 329410 PT6ZWY

uo13onJ3sul @reZwy

alqeu3y yoje eiled 9TT6ZWY

9lqeu3 uoLldnJalsu] 9116wy

sng-A 8lqeul 3nding 9TT62WY

alqeus Ja3stbay sniels 9rTeZWY

309195 3S81 |euolllpuod) 9TT6gWy
uoL3dndlsuy 9162wy

JUlUWWOY)

£04g T 2€
dldg I £e
€949 1 be
away I Ge
--- 9 9e-T
%a-6q o1 -1
O1-€1 b 2555
370 T 95
N3L 1 LS
A30 T 85
LY 1 65
11-v) v $9-£9
01-S11 91 ¥9-6/
oLuowsupy YIpiM S3tg

PL3L4 UOLIONUISULOLILY

491 [043uU0) paadS YbLH AU37 Yl J40F UOLIONAFSULOIDLW

ADVANCED MICRO DEVICES %

5-426

ED29116

5-426

Reddy 0414 VEQW6 03 Indul (ejeg LetJaS S(qeul) LdNT ! 81
1sonboy pueuwwo) bmmw 1 61
(W40 JOARM PBPOJ0JUILW) (256 404 dSLNd AI0LI 92dd 1 02
s4915169Y 920493Ul (zGewy 03 sng AJousld alqeul }d20() 0232 1 12
4915169y 900 4493Ul Shg 91Ag-4aM07 03 (zGeWY d1qeul %201) 1239 1 22
09-29 “@d-£d dIY @zsewy 03 sng (Auowsy d|qeu3) gzlg 1 £2
sng-0 pzseWy 03 91Ag Joddn sng (A.owsp 3Lqeul) nelg 1 X4
sng-q @zGeWwy 03 23Ag J4emo sng (AJowsW dLqeud) prak: 1 G2
sng-A 9TT62WY 03 sng (AJouwdl 3|qeud) 9118 T 9¢
Aeady 0414 VE@Y6 03 sng (Auowsy 31qeus) £0.18 ! L2
1N0 uoL3dadlg sng 1nog 1 8¢
sng-b @gzgeWy wouy 93A4g Jaddn sng (AJousy aLqeul) nzdg 1 62
sng-d @zgewy woua} 9349 43MOT sng (K1owap ornmcuv arEL 1 (0]
sng-A 9TT6cWy wouy sng (AJowsy 31qeul) 9144 T 1€

Jusumod J LUOUWRBUNW YipLm S3L9

pLOL4 UOLIONUISULOUILY

(ponuL3uod) 49 1043u0) paadS ybLH A49p 2yl 403 UOLIONAISULOUDLNW

ADVANCED MICRO DEVICES &t

5-427

ED29116

5-427

WOYd uolssaudwo) eje@ 404 309135 a|qe) o3e|sued) Ly7X £)

97eY 33LUM Y9IM H. €

9q043S uoLluslly/309|3s ASYS T 14

Aedde 0414 vEPye 1959y EIEL] 1! g

oje9 peoy yagy T 9

}sanbay Ja32weded 03yud 1 L

Aeade 0414 YEQPYE 40 peoT |3||eJed (e1qeu3) £01d T 8

Aedue 0414 VEGY6 Wo4s Y2394 (3 [edRy (3Lqeu3) £04d T 6

S3tE Wd @zsewy wout silg 4 (@zseWy 40 Buiyyes 9lqeu3) Wdd4d T o1
dlqeul Jojaweded an3d T 11T

Aedde 0414 VE@Y6 Wod4 IndIng (ejeq [eludg 9lqeu3) 1dno T Al
uoLjeusadp 93LuM Auows)y (9lqeu3) LUMW | 1 €T

pedy AJdowsW (4944ng 9| qeul) Y3 T 1A}

‘U93s169y Sssauppy Asows (4944ng 40 Bulpeoq dlqeul) QYW T 61
(Lles 31qnop) sng-x 9TT62UYy 3994Lpul dump (3lqeu3) IdWe ¢ 91-L1
JuBWWOY O LUOWaUK UlpLM sitg

PLOLd UOLIONUISULOUILY

(PoNUL3IU0D) US| 04FUO) poads UBLH A4S\ BY3} 40 UOLIONAISULOJDLY

ADVANCED MICRO DEVICES &1

5-460 ED29116 5-460

Intelligent Controller - Very High Speed (continued)

Conclusion

What makes this controller so fast?

e The Am29116 microprocessor has been combined
with the Am9529 burst error processor.

- This provides the powerful Am29116 instruction set
and the very effective hardware elements of the Am29116:

. its CRC logic
. 32 registers
. barrel shifter
. priority encoder
- The Am9520 is a relevant specialized device which:

. generates the checksum

. checks the data together with the checksum
and produces both the error pattern and error 1ocat1on

. is very fast (due to its special hardware).
You can calculate a CRC remainder -

on an Am9520 at 5@nsec per data byte.
on an Am29116 at 2(@nsec per data bit.

(The Am9520 is 32x faster than the Am29116!).
e The Am9520 is unique in supporting the very fast
Chinese Remainder Theorem method that greatly speeds

the correction of a faulty sector.

This method is fully supported by hardware for use while
reading and in the correction calculation itself.

ADVANCED MICRO DEVICES &V

5-470 ED29116 5-470

Intelligent Controller - Very High Speed (continued)

Conclusion (continued)

e We can write special microcode: for example for packing
ASCII fields. '
This is not possible with a fixed-instruction-set processor
or a specialized LSI disk-controller chip.

e We are making use of the parallel hardware of the 9520.
For example, the Am9520 can perform up to four simultaneous
polynomial division operations and produce four independant
syndromes concurrently.

e We are concurrently reading from the disk and generating
the polynomial remainders for error detection and correction.
(We were not able to support checkbit calculation

in parallel with writing, however) .

e We have used a FIFO array to allow us to read a data stream
that is faster than even an Am9520 can check it.
e We have incorporated a buffer memory that:

- holds images of the last eight sectors read from or
written to disk

- holds I/® request queues to maximize throughput
- holds additional house keeping tables

‘e We have used a PROM to translate from EBCDIC data
to packed-BCD or ASCII

ADVANCED MICRO DEVICES &1

6-10 ED29116 , 6-19

CHAPTER 6

Application of Am29116 to General Purpose CPUs

ADVANCED MICRO DEVICES &1

ADVANCED MICRO DEVICES &1

6-20 ED29116 6-20

A Microprogrammed CPU Using Am29116

The following pages provide an introduction to
AMD Application Note MPR-1712

ADVANCED MICRO DEVICES &

: ADVANCED MICRO DEVICES oV

6-30 ED29116 6-30

A Microprogrammed CPU Using Am29116

Introduction and System Overview
e Am29116 is optimized for peripheral controller applications

e However, Am29116 is also an ideal choice for CPU's as well.
- it has a powerful instruction set for:
. arithmetic operations
. data movement
. multiple-bit shifts
. bit manipulation

. status manipulation

- it has high speed (100 nsec cycle time)
- it can reduce power requirements
- it save area on PC boards
@ We will describe a CPU buﬁ]t with the Am29116 which maintains
architectural and software compatibility with the Super-16.*
e This CPU incorporates pipelining at
- the microprogram level

- the macroinstruction level

* As described in detail in
"Bitslice Microprocessor Design" by Mick and Brick, Chapter 9

ADVANCED MICRO DEVICES &1

6-35

ED29116

6-35

Central Processing Unit Block Diagram

MAIN
MEMORY

ADDRESS BUS

DATA BUS

MAIN
MEMORY
CONTROL

INSTRUCTION J r DATA REGISTER J rADDRESS

LOOKAHEAD

REGISTER I

INTERNAL BUS

INTERRUPT
CONTROL

BSTRUCTION REGISTEE]

sren |
REGISTER

CLOCK

SEQUENCE
CONTROL AND
MICROPROGRAM
MEMORY

|

CONTROL

I \

r PIPELINE REGISTER J

L |

Am29116

STATUS

CONTROL

MPR-819

ADVANCED MICRO DEVICES £t

6-40 ED29116 6-40

A Microprogrammed CPU Using Am29116 (continued)

System Organization

This is a simple system comprised of:

e 16-bits-wide main memory built from static RAM chips
e Am29116 processor and CCU

e A simple bus structure:
- can be modified to accomodate interface signals

- but to add other I1/@ devices, a bus controller is needed

ADVANCED MICRO DEVICES &£t

6-45 ED29116 : 6-45

System Organization (continued)

Interface Signals between the Memory and the CPU

416/ data bus .
16/ address bus o]
|/ address accepted
1} data strobe -
cPU Memory
1/ read/write .
1/ memory reqguest o
1, data synch
YA
1 dinterrupt reg. and ack
-y o

handshaking over three busses
- 16-bit-wide address bus
- 16-bit-wide bidirectional data bus
- 7-bit-wide control bus
memory request
read/write
address accepted
data strobe
data synch
interrupt control Tines

ADVANCED MICRO DEVICES it

6-4/ £D29116 | a7

CCCCCCCC

MMMMMM
EEEEEEE

{ sssss T, Xy

MMMMMMM

ADVANCED MICRO DEVICES £

6-50 ED29116 6-50

A Microprogrammed CPU Using Am29116 (continued)

Memory Read (continued)

e To use the data in the n+1th cycle, the Am29116
generates the main memory address during the
(n-l)th cycle.

th

e Data is read during the n*" cycle.

@ The nth cycle must be stretched
to accomodate main-memory READ timing.

e The signal to stretch the nth cycle is provided
to the Am2925 clock generator during the (n-l)th cycle.

ADVANCED MICRO DEVICES &t

6-55

System Organizati

Memory Hrite

ADDRESS E‘;;

on (continued)

n - #h CYCLE

clock control: cp-—j

ED29116

nth CYCLE

6-55

note: cycle n
is also
strecked

:

CPU MEMORY
REQUEST

N

X,

L)

memory : ADDRESS ACCP

—

CPU: DATA STROBE

1

data on bus: wn:TEDnA7//,
/

N

T,

Y

MeMOry: parasYNCH

r
7

MPR-822

ADVANCED MICRO DEVICES &1

6-60 ED29116 6-60

A Microprogrammed CPU Using Am29116 (continued)

Instruction Formats

(same as for Super-16)

One-word instructions (16 bits):

15 87 43 ¢

- register to register RR oP Rl1| R2
- register storage RS opP R1} X2
- storage to storage SS 0P X1] X2

e Two-word instructions (32 bits):
15 @ 15)

- register indexed storage RX opP Rl X2 d

- register storage immediate RX oP R1 X2 d

e 4-bit register address defines one of 16 registers:

- uses lower half (R® - R15) of the 32 registers in the Am29116
as user registers

- upper half (R16 - R31) used by the operating system
(stack pointer, counter, etc.)

ADVANCED MICRO DEVICES ¢\

6-70 ED29116 6-70

A Microprogrammed CPU Using Am29116 (continued)

Instruction Formats (continued)

e 8-bit opcode specifies 256 instructions

includes information about the addressing mode

PUSH/POP operations

I1/0 instructions

decimal and binary integer arithmetic

@ Data types
- bit

nibble

- byte

word

ADVANCED MICRO DEVICES &1

6-90 ED29116 6-90

A Microprogrammed CPU Using Am29116 (continued)

Central Processing Unit

ADDRESS BUS

& , —

; MEMORY
cP - - REDG?ST:ER o fooness
b —fcr
2 LATCH EN REGISTER
INTERNAL BUS . 1
16 —\
15 87 43 [i ®
-—P P — N
'NSTIH“EG R1 R2 REGISTER
= (R) OP CODE EN
12 Yo.15
So-2 Mo.7] [s k LE
e > a
i4.8: hi3-15
8 ¢ A
Po-7
3 INT VECT MAPPING e,
INT REQg.7 Am2918 Vp.g Ag-hz prOM OF pROM OF [=— MAP {PL) Bo-g o2
lo.s 2 s o
TEN
Dg-Dy4 [—- SRE
mmme-d INTD AmZ9116
T VECT (PL) &
REG ? :D——o DLE
cP
12 12 :iEN >—1 SEv
Y
Ty.a
29116) Dy
¢) 0-11 0E;
1 - a
D o pe] EE T er
cc CCFF Am2910
1 wux SEQUENCER .
. cP cK
.
4 1 |—— cP
1 So2 Yo.11
12’1,
3 MEMORY :
» 1z,c.H,0vR
S)
Am2904 Y
[e I
PIPELINE REGISTER (PL) e —— cP or
‘....l L
{Ry.7
3
EDDRESS WREQ
ACCEPTED Am2925 .

MPR-824

ADVANCED MICRO DEVICES &1

6-100 ED29116 6-100

A Microprogrammed CPU Using Am29116 (continued)

CPU - Architecture

e Internal data transfers use 16-bit wide internal bus
e Data is transferred between the system bus and

the internal CPU bus on three paths:

- data register

- address register

- instruction lookahead register (Z-latch).

o Pipelining

- microlevel: pipeline register at the output
of the microprogram memory

(for overlapped instruction fetch and execution)

- macrolevel: instruction register (IR) and Z-latch
. decodes the macroinstruction in the IR

. next macroinstruction, displacement field
or data in the Z-latch

ADVANCED MICRO DEVICES £t

6-119 ED29116 6-119

A Microprogrammed CPU Using Am29116 (continued)

Macroinstruction Data Path

® Macroinstruction can move from main memory to
- the Z-latch or

- immediately to the IR (by making the Z-latch transparent)

e Load IR directly:
- during pipeline-fill operation

- on instruction after a two-word instruction

® Decoding of (IR) determines the meaning of (Z):
- next instruction if (IR) is a RR, RS or SS instruction
- displacement if (IR) is a RX instruction:

A disp]acemeht is moved into the Am29116 via its Y-bus
in the cycle in which the operand address is formed.

- immediate data (used in the execution cycle)
e Am29116 can input and output data in the same microcycle:
- data passes into the D-latch in 15t half of cycle
- In the second half of the cycle, the D-latch is disabled
& the ALU result goes out to internal bus via the Y-bus.
e N-register can be used for:
- N-way branching or for normalization (use prioritize instr'n)

- "n" in the rotate-by-n instruction

ADVANCED MICRO DEVICES &

6-120 ED29116 6-120

A Microprogrammed CPU Using Am29116 (continued)

Microprogram Control

® An2919 sequencer generates address for next microinstruction
- branch address sources:
. pipeline register
. interrupt vector decoder
., macroinstruction decoder (mapping PROM)
. N-register
- Conditions for branching can come from:
. Am29116 condition-test output

. Am2994 condition-test output. Provides:

for extended set of branching conditions

for saving conditions generated previously
(a useful result of having 2 status registers)

Am29116 T-bus (carry, overflow, negative, zero)

Interrupt request accepted by an
Am2914 interrupt controller request

ADVANCED MICRO DEVICES &l

6-130 ED29116 6-130

A Microprogrammed CPU Using Am29116 (continued)

Timing Analyses

ADDRESS BUS

>
— —~ —

VANAN

emed CP DATA e “5"01‘;
e REGISTER ADDRE:
ZLATCH —=3 EN ~—=1CP REGISTER
INTERNAL BUS
® N
15 87 43 0 H
fo—rm P P ——t
= i Rt R2 . A
= R} OF CODE EN ——
Sp.2 M.z
cp
]
Po.r
3 INT VECT
INT REQq.y Am2918 Voo Aghs PROM L mar iy L
.3
Dg-Dyy
—] 16
Nt VECT (PL)
REQ
Th4
@98}
PIPELINE REGISTER (PL}
1....1
ADDRESS WREG
ACCEPTED . .
L

MPR-826

ADVANCED MICRO DEVICES &t

6-140 ED29116

A Microprogrammed CPU Using Am29116 (continued)

Timing Analyses (continued)

Path Computations

Path 1 (IR --> pipeline)

From
Instruction register CP
Mapping PROM ADD
Sequencer D
Micromemory ADD
Pipeline register set up

6-140

Path 2 (CC-flip flop --> CC-MUX control)

From
CC f1ip flop P
Seqqencer cC
Micromemory ADD
CC-MUX sel
cC-flip-flop set up

To
Q 13 ns
Y 49 ns
Y 20 ns
Y 49 ns
5 ns
118 ns

To
Q 13 ns
Y 43 ns
Y 49 ns
Y 15 ns
5 ns
116 ns

ADVANCED MICRO DEVICES &t

6-150 ED29116 6-150

A Microprogrammed CPU Using Am29116 (continued)

Timing Analysis (continued)

Path Computations (continued)

Path 3 (pipeline register --> pipeline register)

From To
Pipeline register cp Y 13 ns
Sequencer I Y 70 ns
Micromemory “ADD Y 49 ns
Pipeline register set up 5 ns

128 ns

Path 4 (pipeline register --> CC-flip-flop)

from to
Pipeline register cp Y 13 ns
Three-state gate enable Y 29 ns
Am29116 (preliminary) I CT 47 ns
CC - MuX Din Y 15 ns
CC flip flop set up 5 ns

ADVANCED MICRO DEVICES £\

6-160 ED29116 6-160

A Microprogrammed CPU Using Am29116 (continued)

Timing Analysis (continued)

Path Computations (continued)

Path 5 (pipeline register --> data register)

From To
Pipeline register cp Y 13 ns
Three-state gate enable Y 29 ns
Am29116 (preliminary) I Y 88 ns
Data register set up 5 ns

135 ns

Path 6 (PC and STACK --> pipeline register)

From To
Am2919 (PC and STACK) cP Y 100 ns*
Micromemory ADD Y 49 ns
Pipeline register set up 5 ns

145 ns

* It is assumed that the previous instruction could
produce no change in the counter or could only
decrement the counter

ADVANCED MICRO DEVICES &%

6-170 s ED29116 6-170

A Microprogrammed CPU Using Am29116 (continued)

Timing Analysis (continued)

e Most critical path was

From To
Pipeline register cpP Y 13 ns
Am29116 I CT 47 ns
CC MUX D Y 15 ns
Sequencer € ¢ a3ns
Micromemory ADD Y 49 ns
Pipeline register set up 5 ns

163 ns

8 Introducing the CC-Flip-Flop separates the cycle time for
that path into two non-critical paths (4 and 2).

8 Since the CC-FF delays the cC signal by one clock, the
CC-MUX-select lines are driven directly from the microprogram
memory rather than the pipeline register. This tactic
re-aligns the selection of the condition code with the
execution of the microinstruction.

ADVANCED MICRO DEVICES 1

6-180 ED29116 | 6-180

A Microprogrammed CPU Using Am29116 (continued)

Macroinstruction Execution

e 4 basic sequences of operations:
- Form Memory Address of Instruction: (1 microcycle)
PC, MAR <~- PC + 2
- Fetch Instruction: (1 microcycle)
generate Main-Memory-Request and Read-Strobe
bus <-- ((MAR))
IR <-- (bus) at the next rising edge
- Decode Instruction: (1 microcycle)
IR <-- Z-latch
PROM generates starting address for the microprogram
- Execute:
Am29116 performs the specified operation on the operands.
The number of microcycles depends upon the operation.
® 2 extra steps are needed for instructions with memory operands
- Form Operand Address: (1 microcycle)
MAR <-- (X) +d using the 'd' in the Z-latch
- Fetch Operand: (1 microcycle)

Z <-- ((MAR)) or D <-- ((MAR))

ADVARNCED MICRO DEVICES &

6-190 ED29116 6-190

A Microprogrammed CPU Using Am29116 (continued)

Pipelining at the Macrolevel

@ There is very little scope in this configuration

for additional macrolevel pipelining:

You could use a second Am29116 as the basis for a

Program Control Unit.
That is, you would use one Am29116 as an ALU
and the second Am29116 as a PCU.
- You could use some other processor as a basis for

this PCU.

e A PCU would increase throughput by introducing parallelism
in the advancing of the program counter, and in stack
operations.

te The present configuration already incorporates some

concurrency, however.

ADVANCED MICRO DEVICES &1

6-209 ED29116 6-200

A Microprogrammed CPU Using Am29116 (continued)

Pipelining at the Macrolevel (continued)

Overlapping of Register to Register Instructions

Form instruction PC + 2 - PC
A D E .

Address 8 c PC + 2 — MAR
Fetch Rz z z z PC + 2 — MAR and
instruction A B c D £ Load Z Latch or IR

iR IR IR Decode Instruction and
Decode A

B c D . Load Pipeline Register

Z + Index

Form Operand
Register - MAR

Address

Fetch .
Operand Load Data Register
Execute A A B B C Cc o] o]

Y Y Y Y Y Y Y Y Y Y Y Y Y The Am29116 Usage

A, B, C, D are Register to Register type instructions.
Z = Z Latch
IR = Instruction Register

Cycle 2: pipefill operation (directly load IR) from memory
while Am29116 forms next instruction address

Cycle 4,5: in single-port Am29116, RR instr. needs 2 cycles

L]

Cycle 6: IR <-- (Z) and map into microaddress with a PROM
while Am29116 forms next instruction address

@

Cycle 3 is the only cycle in which the Am29116 is idle.

@

e After the first 5 cycles, every third cycle produces a result.

ADVAMNCED MICRO DEVICES <1

6-210 "ED29116 6-219

A Microprogrammed CPU Using Am29116 (continued)

Pipelining at the Macrolevel (continued)

Overlapping of Register to Index Storage Instructions

Form instruction ‘ PC + 2 — MAR
Address A1 Ap B Bo c Co PC + 2 — PC,

R z IR z iR r4 (PC + 2 — MAR
Fetch . and PC)*
Instruction A | Ap B Bp c Co Load IR or Z Latch

PC + 2 - MAR and PC
Decode A B C Decode and Load
Pipeline Register

Forn1 Operand A 5 c Z + Index
Address Register — MAR

PC + 2 —» PCand MAR
A B Cc Load Operand in
Data Register

Fetch
Operand

Execute A B C

Y Y Y Y Y Y Y Y Y Y Y Y Y The Am29116 Usage

*For pipefill operation only. A, B C are Register to Index storage type instructions.
Ap, Bp, Cp are displacement.
Z = Z Latch
IR = Instruction Register

Cycle 2: Form AD creates address to fetch displacement, 'd'.

Cycle 3: Decoding determines if Z contains a displacement.

Cycle 6: Two-word instructions use both Z-latch and IR:
- Instruction is directly loaded into IR.
- Execution of A prevents formation of address of displacement, 'd'.
(a PCU would save a cycle here).

Every fifth cycle the Am29116 is idle.

@

Every fifth cycle produces a result

ADVANCED MICRO DEVICES 1

6-220 ED29116 6-220

A Microprogrammed CPU Using Am29116 (continued)

Pipelining of the Macrolevel (continued)

Overlapping of Branch-on-Condition RX Type Instructions

OP | M | X2 d M is the condition
(X2)+d is the address

Form fnstruction |, | Bor | Bp B+2 B+2p PC + 2 — MAR
Address 0 K Kp K+2 K+2p PC +2— PC

tR z 1R 4 IR z {PC + 2 — MAR
Fetch . Bor| Bp B+2 B+2p and PC)*
instruction A Ap K Kp K+2 K+2p Load IR or Z Latch

PC + 2 —~ MAR and PC
Decode A B B’.LZ Decode and Load
K K+2 s N
Pipeline Register

Form Operand B B+2 Z + Index
Address K K+2 Register — MAR
PC + 2 — PC and MAR

Fetch E E:g Load Operand in
Operand Data Register

B B+2
Execute A* K or

K+2
Y % 4 Y Y Y Y Y Y Y Y Y The Am29116 Usage

*During this cycle decision to branch takes place
If condition is true, Address = K = Index Reg + Ap
If condition is false, Address = B = A+1

Z = Z Latch
IR = Instruction Register

e Cycle 5: the result of the execution in cycle 4 held by the Am2904 determines
whether the Am29116 will issue the inline or the branch address

ADVANCED MICRO DEVICES 41

6-230 ED29116 ' 6-230

A Microprogrammed CPU Using Am29116 (continued)

Microword Format

@ 78-bit wide microword e Control bits for each functional unit are grouped

Field Width Mnemonic Description

ALU

16 Ip-I15 29116 Inétruction
1 DLE 29116 Data Latch Enable
1 IEN 29116 Instruction Enable
1 OEY 29116 Output Enable Y-bus
1 SRE 29116 Status Register Enable
1 OET 29116 Output Enable T-bus
3 RAMSRC 29116 Ip-I4 Source Select
2 NSRC 29116 1g-17p Source Select

Data Path
4 DSEL Data Register Source/Destination Select
1 DLD Data Register Enable
1 MARLD Memory Address Enable
1 IRLD Instruction Register Enable
1 JARY Z-Latch Enable
1 NLD N-Register Enable
1 MAP Mapping PROM Qutput Enable
1 VECT Interrupt Vector PROM Output Enable

ADVANCED MICRO DEVICES &1

6-240 ED29116 6-240

A Microprogrammed CPU Using Am29116 (continued)

Microword Format (continued)

Field Width Mnemonic | Description

Memory Control

1 R/W Memory READ/WRITE Pulse
1 WREO Wait Request

1 DATASTB Data Strope

1 MEMREQ Memory Request

Interrupt Control
4 Ip-13 2914 Instruction
1 INTD 2914 Interrupt Disable

Clock Select

3 L1-L3 | 2925 Clock Length Select
Status

1 EZ 2904 Enable Zero

1 EC 2904 Enable Carry

1 ES 2904 Enable Sigh

1 EOVR 2904 Enable Overflow

1 OEM 2904 Enable Machine Status

1 OEMICRO 2904 Enable Micro Status

ADVANCED MICRO DEVICES &Y

6-250 ED29116 6-250

A Microprogrammed CPU Using Am29116 (continued)

Microword Format (continued)

Field Width Mnemonic Description
Test
4 T1-T4 29116 or 2904 Test Status Instruction
CCSEL
3 CCSEL Condition Code MUX Select

Sequence Control

4 Ip-I3 2919 Instruction
Branch Address

12 BA Next Micro Address
78

ADVANCED MICRO DEVICES i1

6-260 ED29116

A Microprogrammed CPU Using Am29116 (continued)

Conclusion

® Microprogrammability makes for easy and quick design
of a customized architecture.

e The powerful instruction set of the Am29116 is very
suitable for CPU applications:

bit mampulation

multiple bit rotate

rotate and merge

rotate and compare

prioritize functions
& We have shown a minimal configuration:
- a PCU unit based on another Am29116, Am2901's

or Am2930 PCU slices could increse the throughput.

ADYANCED MICRO DEVICES &1

6-270 ED29116 6-270

A Microprogrammed CPU Using Am29116 (continued)

Comparison with Super-16

ADVANCED MICRO DEVICES &1

6-280

ED29116

6-280

A Microprogrammed CPU Using Am29116 (continued)

The Super-16

A 16-bit computer built from Am290® Family parts to illustrate design techniques.
Incorporates pipelining at the macro- and microprogram level.

¢

ADORESS BUS I
[DATA BUS J>
r U
——) ZREC
| (LAtcin
PCU SHEET 3 DAYA PATH]
SMEET &
+ .
t6 4 3 }
iR 20 REG 21 REG
{LATCH) P REG {LATCH) {LATCH) 1
{\ . I
C C U 3, VECTOR
16
1 !
MM
——— R
byesd "] 1REG !
e [B A VECTOR
r 15 ALU SHMEET 2 DECODER DECADER
I j E "
0A BUS !
T] 8 8
L s s
> ! DB BUS / N
I TRANSFER 15 /},
Am2901A X & REGISTER . & oo
a oa 08 I STATUS
A PSW
REG SEG Am2904
AmZ903 X & m2 cc Am2310 .
5 B —f Y
I_. - TEST TREE
R i
PCU TRAN Y BUS 3
MICROPROGRAM MEMORY
—’V Am287705 X 12
— PR PR ——
CLOCK VO, INTEAFACE. € BUS PIPELINE REGISTER
SHEET 75 SHEET #7 l l l
< DATA BUS !
cLoex T .
o
w0
CONTROL o M
" BERDORY VECTOR SYHC AEG REGISTER
CONTROL 3
Am9s5) Am9551 AmISTY Am29td
" U
L €BUS l }/ F j [cous /
[‘ ' 3
VO INOUT 10 OUTPUT
CONTROL CONTROLS

RIRE:

CONSOLE ¥ PERIPHERAL IF

il

EXTERNAL INT REOS

'

|
|

ADVANCED MICRO DEVICES &1

6-290 ED29116 6-290

A Microprogrammed CPU Using Am29116 (continued)

Super-16 (continued)

Processor Organization

¢ Distinct sections

- program control unit (PCU)

- arithmetic and logic unit (ALU)

- computer control unit (CCU)

- data paths

- memory control, clock control

- 1/0 interface

- interrupt section
There is one important distinguishing feature as compaked
with the Am29116 CPU described in the last section:

@ The ALU and the PCU are separate.

We will restrict our attention to this point.

ADVANCED MICRO DEVICES o1

6-300 ED29116 6-300

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen

The PCU:
¢ Incorporates:

MAR (latch)

4 Am29P1 microprocessor slices

a 16-bit transfer register

a 16-bit bidirectional buffer ... called a transfer driver
¢ Controls the macroprogram sequencing
e Is controlled by the microprogram

@ Register assignments

RO

program counter PC

R1- stack pointer

R2- stack lower limit

R3- stack upper limit

R4- +2 ... a useful constant
R5- +4 ... a useful constant
R6,R7- not used but are available

R8,R15- not used (wired to be disabled)

ADVANCED MICRO DEVICES &t

6-310 ED29116 6-310

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

PCU (continued)

e Function
- updating of the PCU
- MAR <-- (PC) for'reading instructions or data from main memory
- updating of the stack pointer
checking stack limits
® Communication
- data to PCU from ALU via transfer register

- data from PCU to Y-bus of the ALU via PCU
transfer drivers

ADVANCED MICRO DEVICES o1

6-320 ED29116 6-320

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

ALY

e Designed from

4 Am2903 superslices

AM2904 status and shift control logic

PSW register

3 buses

DA: ALU input from Zy register (memory data)
IMMD gate (immediate field of microcode)
DB: ALU input from PSW

Y: ALU output, input to RAM registers

e RAM register selection from instrucfion register (I)
- Ig.3t A address on Am29¢3
- I4_7: B address on Am2993 or
control for CCMUX (in Am29@4) in conditional

branch instructions (macrolevell)

ADVANCED MICRO DEVICES &1

6-330 ED29116 6-330

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

ALU (continued)

@ Byte-wide operations are possible as well as word-wide:

only the Tower 8 bits are affected

by disabling write-enable & output-enable for slices 3,4

word/byte MUX selects C,N,OVR from slice 2 (MSS)

force Yg_15 to zero for Z-signal

@ Control for the ALU
- A & B addresses, Am2904 CCMUX from macrolevel I7_®
- ALU operations from microlevel M;g_gg

- WORD signal Mg (byte/word)

ADVANCED MICRO DEVICES o1

6-340 ED29116 6-340

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

(Macro) Instruction Execution

@ Form instruction address (PCU)
- publish bus request at the beginning of the cycle
- PC, MAR <-- (PC) + 2

- address bus <-- (MAR) 5@ns prior to beginning of next cycle

e Instruction fetch (main memory)

- the main memory is fast enough to all reading in one cycle

e Decode (mapping PROM)

- fetched instruction is routed through Z and Z1 registers
to the instruction decoder (mapping PROM)

- 8-bit opcode is address for the PROM giving the starting
address for the microprogram to execute this instruction

@ Displacement fetch (main memory)
- every instruction fetch is followed by another read cycle:
. next instruction fetch for one word instructions
. displacement fetch for two word instructions

- decoding of the previous instruction determines how
this data should be interpreted.

ADVANCED MICRO DEVICES £V

6-350 ED29116 6-350

A Microprogrammed CPU Using Am29116 (continued)

Comparison with the Super-Sixteen (continued)

(Macro) Instruction Execution (continued)

® Form operand address (ALU)

- fetched displacement is sent through the Z and 10
register to the ALU (2903)

- MAR <-- (Xp) +d (50 ns before the end of the cycle)

(See note 1)
@ Operand fetch (memory)

e Execute (ALU) (See note 2)
- 2993's perform specified operation on the operand's

- simultaneous with the last execution cycle
the instruction decoder is enabled

Notes: 1) Remember the instruction format for the CPU in
the last section. This application is an emulation
of the Super-16, so that the instruction formats
match.

2) Execution may take more than one microcycle.

ADVANCED MICRO DEVICES &1

6-360 ED29116 6-360

Pipelining at the Macrolevel (continued)

Register-to-Register Pipeline Operation

Action A, B, C, D are RR instructions
Form Instruction Address A B Cc D
Fetch instruction A B Cc D
Decode A 8 o] D

Fetch Dispiacement

Form Operand
Address

Fetch Operand
Execute A B Cc D

Cyc\o | 3 4& | B b | F

@ Cycle 1,2: Compare with pipelining of the CPU in the last section

e Cycle 3: Address of a third instruction is formed
(Super-16: Z,Z@,Zl—registers; Other: Z-register)

e Cycle 4: Simultaneous instruction execution and
formation of instruction address

Execution of A needs:

- one microcycle for most instructions because
of simultaneous decoding of B

- more than one microcycle for a few instructions
(e.g. I/0 instructions). The pipeline stops.

o After the first three cycles, every cycle produces a result.

ADVANCED MICRO DEVICES &t

6-370 ED29116 6-370

Pipelining at the Macrolevel (continued)

Register-to-Indexed-Storage Pipeline Operation

Action ‘ A, B, C, D are RX instructions
Form Instruction Address A B c
Fetch Instruction A B o]
Decode A B o]
Fetch Displacement A B o]
Form Operand Address A B o]
Fetch Operand A B o]
Execute A 8 . C
Cycle F | |3 |45 [|3 (8 19 [0 ||

e Cycle 2: The same actions as in the RR pipeline operation occurs
(fetch instruction A, MAR <-- PC + 2)

e Cycle 3: Form instruction address, memory read and decode
are performed simultaneously

The system doesn't "know" whether a displacement
or the next instruction is fetched from memory.

After the decode of instruction A it is determined
to be a displacement

@ Cycle 4: Simultaneous form instruction address (PCU) and form
operand address (ALU). This was impossible in the
CPU of the last section.

e Cycle 5: Only one pipeline stage is active: memory read

The operand is fetched

Decoder is not enabled yet and therefore the
upper part of the pipeline is stopped

ADVANCED MICRO DEVICES &V

6-380 ED29116 6-380

Pipelining at the Macrolevel (continued)

Register-to-Indexed-Storage Pipeline Operation (continued)

@ Cycle 6: Compare with Cycle 3
Additional execute A cycle (ALU)
In this cycle you see again the advantage of two
separate devices for the PCU and the ALU.
You can form instruction address and execute in
the same microcycle.

e The pipeline needs 6 cycles from the beginning

to produce the first result.

@ Every third cycle a result is produced.

ADVANCED MICRO DEVICES &

6-390 ED29116 6-390

Pipelining at the Macrolevel (continued)

Branch on Condition RX Pipeline Operation

A = RX Branch instruction
Action B = Next RX Instruction if branch is not taken
K = next RX Instruction if branch is taken
’ B+2
Form Instruction Address A 8 K
E K+2
) A 8 K B+2
Fetch Instruction » K42
B
Decode A K etc.
B
Fetch Displacement A K
B
Form Operand Address K
B
Fetch Operand K
B
Execute ‘ Aq Az A3 K
| (2 (3 (4[5]38]9 |\o

Cycle 3: Form instruction-address (next instruction if branch is not taken)
Fetch displacement of next'instruction

Decoding A detects a branch 1hstYuctiqn

ADVANCED MICRO DEVICES &1

6-400 ED29116 6-400

Pipelining at the Macrolevel (continued)

Branch on Condition RX Pipeline Operation (continued)

e Cycle 4: Execution of the branch instruction starts

- Determination whether the condition is true
or false is not yet possible.

- Sequencing of the program is temporarily unknown
To place the correct instruction in the Z-register
when decoding of the next instruction (B or K)

is enabled, form the instruction addresses of the
two alternative instructions:

- Form instruction address K (where K = (Xp) + d)
- Instruction address B was formed in the last

cycle and B can be fetched in this cycle.

@ Cycle 5: Fetch instruction K

Executing Ay determines whether the condition
js true or false

The cycle is long enough to form the correct
instruction address (K+2 or B+2)

@ Cycle 6: The last execution cycle A3 enables the decoder.
Decode either K or B as determined in cycle 5.

e You see: The generation of the two alternative instruction addresses
prevents the pipeline from flushing out totally.

ADVANCED MICRO DEVICES &%

ED29116 6-410

6-419

Super-16 Microword Format

ROUTE TO 8 RTE & e
TRANSFER Z TO 2! (BPF) 22 3 &
Am2910 CCEN °
Am2903 IEU WORD/BYTE WORD 8
Am2903 EA 8
Am2903 OEY g
Am2903 OEB %
Am2903 s 3
AmM2903 i] =2
AM2903 I @ Le
Am2903 Is 8
Am2903 ls]
Am2903 I3 *
AmM2903 Iz 8
AmM2903 i 3
AmM2903 fo 3
]
ENABLE TRANSFER REG. ENTREG 3 2
LOAD TRANSFER REG. LDTREG 3 2
I-REG EN CTR. ENCTR 3 o]
I-REG INC/DEC INC 3 Z -
PCU TRANS CHIP DISABLE PCUCD] ~Tg 3 i
PCU TRANSFER REG. PCU — Y Nl 228 r 5
LOAD MEMORY ADDR. REG. LDMAR Ny g Q
LOAD D-REG. LDD 3 2 2
LOAD ZI INTO | REG. Zl -1 2 hut -
ENABLE 20 — DA ENZ0 2 g | A
ENABLE PSW PSW 3 o >
SHIFT CNT Am2910 ADDR. SHTCNTEN 2 m
BRANCH INSTR. EN BRIEN a z
puu}
<]
4
. [77]
Am2901 F — B/IQ PCUI, 2
Am2901 PCUI; o
Am2901 . PCU}, I -
AM2901 PCUl, o ~93
Am2901 PCUlg 2 z=29
AmM2901 PCUA, @ e 5
Am2901 PCUA, o
Am2901 PCUAg @
Am2901 PCUB, o
Am2901 PCUB, o
Am2901 PCUB,
o
BUS REQUEST REQB o 598
MEMORY REQUEST MREQ Y ~38
HOLD REQUEST AREQ o =2
MEMORY WRITE/READ WRITE g
MEMORY WORD/BYTE MWORD B

ADVANCED MICRO DEVICES %

6-420 ED29116 6-420

Super-16 Microword Format (continued)

x
x
EN IMMEDIATE — DA BUS iMMD & o
ROM/IREGEN ROMII 31 388
1/0 CONTROL REG. EN IOEN &l <83
Am2914 INTERRUPTS DISABLE INTDIS & @ =
Am2914 ENlg-ENI, INTRIEN 2
Am2904 SHIFT EN SHFTEN &
CNTLB, &
CNTLBg =
GENERAL CNTLBs) o
USE CNTLB, | 29
CONTROL CNTLE, @ ~ @ -o"r
BITS CNTLB, @ =
CNTLB, @
CNTLB, ®
x
P
Am2904 QUT EN CONDITIONAL TEST OECT b - =
Am2904 EN ZERO EZ & a
Am2904 EN CARRY EC R @ b
AM2904 EN SIGN Es = 22 o
Am2904 EN OVERFLOW EQVR] @ o
Am2904 EN MACHINE STATUS CEM N 3 o
Am2904 EN MICRO STATUS CEx B 3 &
Am2904 I;, CARRY OUT CNTL v iz N - 3
Am2904 I;; CARRY OUT CNTL Ihe 3 § Q
2
AM2304 TEST, B o iﬁ
Am2904 . TEST, N g 3
Am2904 TEST, P 55 g b
Am2304 & Am25L5251 v TEST, N ~a a
Am2904 & Am25LS251 TEST, N Z
Am2904 & Am25L5251 TEST, 3 3
2
AM2910 I NAC, s g @
AmM2910 I NAC, S 2%
AM2910 14 NAC, 3 “Ffz2
Am2910 Iy NAC, > 2
Mys &
Myy 2
Miy I
Mz]
::1111 =
10 > =
My ° a £
Mg ® ST~
My ~N 2 §' 2
Mg o 3 g
[+]
Ms » a
M, s
M3 w
My n
M, -
Mg =]

ADVANCED MICRO DEVICES &1

ADVANCED MICRO DEVICES it

6-430 ED29116 6-430

Comparing Am2901, Am29203, Am29116
for General Purpose CPU's

ADVANCED MICRO DEVICES &1

ADVANCED MICRO DEVICES %

6-435

ED29116

ST

Ny 3:G-97 404

6-435

M 22 M9°g MZ°S Jamod |eoLdA]
ISS X € ~

yo62WY X T yoe2Wy X T
2062Wy X T 2062wy X 1 v 31L9-971
9TT62WY X T £OZ62WY X b ITP62WY X ¢ 404 S3dLA3(Q
(xew) su @z1-0oT |, (xew) su @@ET ., (xew) su @ppT . abusp B °1e30Y 319-8
(xew) su @ZT-0OT ~ (xew) su @oAT . (xew) Su @@8 ~ 910310y 31L9-8
ALuo g¢ ¥9°8Y 2€ ‘91 ALuo 91 suaysLbay #
Silg 9T 40 8 S3lg 9G2-¥ s3lg 962-v YIpLM pJop eile(
Axmsv su QOOT . Axmsv SU O2T ~ Axmev Su QOOT A aay aog

(£/9TG62WY Y3Lm xew) Su ¢pg ~

(xew) sSu GPP6 ~ (xew) su @P8T ~ (xew) su @@9T ~ LINW 219-9T
(xew) su @ZT1-0OT (xew) su @21 ~ (xew) su ¢g aay 1.9-91
9TT62WY £OZ62WY ITO62WY uoljedsado

S.Nd) 950ddnd |eJ4ausy se sa4njead JO uosldedwo)

6-450 ED29116 6-450

Performance Analysis

Instruction Type

Processor Type Bit Test Bit Set
2 1
8048
5,000ns 2,500ns
5 2
Am9080
4,250ns 1,750ns
1 1
AmZ 8000
1,000ns 1,000ns
Am2901B (4) 1 1 Key
Am2904
Am2902A Number of
25152538 (2) 10dns 10dns Instruction
xecution
Am2901B (4) 1 1 Time
Am2904
Am2902A
25152538 (2) ‘
25519 (8) 10®ns 100ns
1 1
Am29116
10¢ns 10@ns

ADVAMNCED MICRO DEVICES oV

ED29116

Performance Analysis (continued)

Instruction Type

6-460

Key

Number of
Instruction

xecution
Time

Processor Type Rotate by N Rotate and Merge
28 44
8048
212,500ns 252 ,500ns
32 42
Am9980 '
113,%00ns 138,000ns
8 12
AmZ 8000
11,250ns 15,25®ns
Am29018 (4) 9 12
Am2904
Am2902A
25152538 (2) 1,025ns 1,325ns
Am29p1B (4) 1 4
Am2904
Am2902A
25152538 (2) |
25510 (8) 160ns 460ns
1 1 -
Am29116 7
10@ns L 10¢ns

ADVANCED MICRO DEVICES &t

6-470

ED29116

Performance Analysis (continued)

Instruction Type

Key

Number of
Instruction

xecution
Time

Processor Type 16-bit ADD 16-bit Multiply
54
8048
15,000ns 810 ,000ns
40
Am9p8Q
2,500ns 509, 000ns
1
AmZ 8099
1,000ns 17,500ns
Am2901B (4) 2
Am2904
Am2902A
25052538 (2) 115ns 2 ,90dns
Am29018 (4) 2
Am2904
Am2902A
25052538 (2)
25510 (8) 115ns 2,000ns
12
Am29116
190ns 9,600ns

ADVANCED MICRO DEVICES £V

6-475 ED29116 6-475

Performance Analysis (continued)

Are you familiar with the Am25S1(Q?

How does it help speed up shifts and rotates on Am29¢1 systems?

It is a four-bit high-speed shifter:

- It shifts four bits of data ©0,1,2 or 3 places.

- Several devices can be connected to:

. perform shifts of ¢,1,2 or 3 places

on words of any length. (# of 25S510's equals # of bits/4)

. perform a complete end-around barrel shift.

(# of 2551¢0's needed equals # of bits/2)

ADYANCED MICRO DEVICES &t

ADVANCED MICRO DEVICES o1

7-10 ED29116 7-10

CHAPTER 7

Exercises - Part 2

ADVANCED MICRO DEVICES &1

ADVANCED MICRO DEVICES &V

7-20

ED29116

Exercises - Part 2

You have 8 ASCII characters that normally occupy 64 bits of
memory. Since each byte has in fact only 7 active bits, it
may be useful to pack these bytes into only 56 bits for
storage on a disk. In writing these bytes to a disk you wish
to pack them into a 56-bit contiguous frame by discarding the
parity bit from each byte (i.e. the bit in the most
signifigant position). Write the microinstructions for the
Am29116 for packing these 64 bits into 56 bits. Assume that
the characters are initially in R® thru R3 and are to be
packed into R4 thru R7.

Write the code to perform a 16 x 16-bit unsigned integer
multiplication. Write your code on the assumption.that the
operands are already in the RAM or on the assumption that the
operands are to be supplied by your code as immediate values.

If you have time, try the following exercise:

The Am29116 can be very effective in arbitrating requests for
service from several different sources. Suppose there are
eight sources of service requests and the Am29116 has already
serviced all requests from sources S7,S6 and S5. Write the
code to cause the Am29116 to branch to the service routine
associated with the highest priority source of the group
$4,53,52,51,59 while ignoring S7,S6 and S5.

7-20

ADVANCED MICRO DEVICES LT

ADVANCED MICRO DEYICES o\

7-30 ED29116 7-30

Solutions for Exercises - Part 2

ADVANCED MICRO DEVICES £t

ADYANCED MICRO DEVICES &1

7-40 , ED29116 7-40

Solutions for Exercises - Part 2

Problem #1: Packing ASCII characters
Example Even parity

0100 0100 1100 001l Q100 @010 OQlod @Rl
D C B A

R1 RO
SOR, B, MOVE, SORA, RO ;0000 0000 0190 PPl --> ACC
ROTM, W, 15, MRAI, RQ®
IMME H#3F80
U: 0100 0010 0100 ¢ppl
rot U: 1010 0001 0010 QOGP
R: 0000 0000 0100 00pl

mask: 0011 1111 1000 Q0P

ACC: 0010 0001 @100 0OPl
W——Afv\/

B without A without
parity parity

ROTM, W, 14, MRAI, Rl
IMME H#COQ0Q

U: 9100 9100 1100 0011
rot U: 1101 0001 0011 Q@9
R: 0010 0001 Q100 GPpl

mask: 1100 0000 0000 POD

ACC: 111 101 1
&b 0 0001 0loD 0pQ

/ B A
two last bitsof C

ete,

ADVANCED MICRO DEVICES £1

7-50

ED29116

7-50

Solutions for Exercises - Part 2 (continued)

Microinstructions for Packing ASCII Characters

SOR

ROTM
ROTM
SOR
ROTR1
ROTM
ROTM
SOR
ROTR1
ROTM
ROTM
SOR
ROTR1
ROTM

SOR

B,

MOVE, SORA, RO
15, MRAI, RO
14, MRAI, Rl
MOVE, SOAR, R4
14, RTRA, Rl
13, MRAI, R1
12, MRAI, R2
MOVE, SOAR, RS
12, RTRA, R2
11, MRAI, R2
10, MRAI, R3
MOVE, SOAR, R6
19, RTRA, R3
9, RAI, R3

MOVE, SOAR, R7

IMME

IMME

IMME

IMME

IMME

IMME

IMME

H # 3F80

H # Cpgg

H # @FED
H # FPop

H # O3F8

H # FCPP

H # @PFE

ADVYANCED MICRO DEVICES ¢\

7-60

Solutions for Exercises - Part 2 (continued)

Problem #2:

Unsigned Integer Multiplication

Some observations...

0 Result is a 32-bit value.
The Am29116 does not provide a double length shift directly.

0 Remember
- try to

i.e. -

that the Am29116 has a single port RAM architecture.
minimize operations which need two register operands

shift the result, not the multiplicand
(only the result needs two registers)

use the ACC or D-latch for the multiplicand

in the double-precision addition use zero as
as an immediate value

ADVANCED MICRO DEVICES &%

ED29116 7-60

7-65

ED29116

7-65

«d00Tw 03 3oeq doo| X 19 $dINS
049z 93eLlpauwu] X 1) qu092
204 <-- J+0+20d8 :HSW X 20U €000y “HIY0L THOL 3U02

£OY <-- J0y+Epd *HST
+ 20npoud jelrjJed ajejnwndoe 03

1

gay uotstosud stgnod | o £OYaay “UYY0L THOL 3U02
i |
*049Z SeM gSW 4L dINS 03 youeug | X 1191831 L (91162) .19 drd dINS
*049Z Y1LM gS7 peo’] | |
caaLidLarnw 33LUS | @ | oY ZdNHS “YYHS “UL4HS JU02
*MNITD Yatm gs7 peol
*3uo0 Aq 3onpoad JO HSW 34LUS | X | Z0Y°1dNHS “HYHS “YLAHS U020
*043Z YiLM g9S7 peoT
*2uo Aq 3onpoud 40 HST 34LUS | @ | EOY ZdNHS “UYYHS “ULHS U092 1d007
ssaJappe doo} ysnd § 433Un0d prOT
® 03 3onpoud JO HST 9zL{eL3Lul | X Y Y¥Z0S *INOW YOS SSYd HSNd 91
@® 03 3onpodd 40 HSW @zL|BLILUI | X 204 “¥70S IAOW “ YOS 3U02
dN|{eA DleLpoull] X puedtL|dLy|NW 3u09
JJY <-- puedi[dL3[ni | X YUNT0S © IA0KW © UNOS Ju0d
anjieA vleLpsuwiwi] X JaLLdLyLnn uRife)e)
PPy <-- AoL|dLI[nNW | X GoY “YI0S “ IAOW H0S JU0D
pcmssou, 34s uoL3onJ3sul 292 490Uanbas | SSOAPPY | SSIAPPY
9TT6cWY youeuag [oL | oquwks

(3tq 9T x 97) uotjedt|dialny paubisun

(penuL3uod) suoLin|0S dSLIJ9X3

ADVANCED MICRO DEVICES X

7-75

ED29116

7-75

2V

Sded

$3doo Nz

AL Yot

ilg R

£y

3ddd

‘arTyd

‘Yidd“g

4144

33XX

R

1pBINI3X3 UOLINAISUT

£y
MY\

[-a

Sng-A eLA
917 1-0 40

B-L s11q om“
33

AN

15S3n03y
153nd3y
1S3n03y

153003y
1s3n0d3y

1s3nd3y

UOLIN[OS 3SLIAIX]

w

= wn

<H

JAINA
JATHQ
JATHA
FATHAd
JATYG
JATHA
JATYd

JATYHG

ADVANCED MICRO DEVICES &1

A- ED29116 A-D

APPENDIX A

A BRIEF REVIEW OF NUMBER THEORY

ADVANCED MICRO DEVICES &%

: ’ ADVANCED MICRO DEVICES ¥

A-1 . ED29116 A-1

A Brief Review of Number Theory

Number theory has application in relation to several products of Advanced
Micro Devices, including the Am29509 Family of signal and array-processing
devices and the Am9520/Am8P65 Burst Error Processor. The theory also is
important in cryptography and in random-number generation. What follows is a
brief summary, without proofs, of selected number theory results and related
notation.

For proofs and much more material see:

J.V. Uspensky and M.A. Heaslet, Elementary Number Theory
(McGraw-Hi1l, New York 1939)

H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms
(Springer-Verlag, New York 1982)

If 'a' and 'b' are integers, with 'b' positive, the division of 'a' by
'b' is defined by: '

a=bg+r , O<r<h

where 'q' is called the quotient and ‘r' is called the remainder. When 'r' is
zero, 'b' and 'qg' are factors or divisors of 'a'. To indicate that 'b' is a
factor of ‘'a' we write "bJa", which we can read as "'b' divides ‘'a'". When
'a' has no divisors other than 1 and 'a', 'a' is a prime. In all other cases,
'a' is composite.

A1l integers which yield the same remainder when divided by 'b' are said
to be congruent modulo 'b'. To say that 'c' is congruent to ‘d' modulo 'b'
we write

¢ £ d modulo b. (but we will write = for = from here on)

This condition will be true if bj(c-d).

~ ADVANCED MICRO DEVICES £

A-2 ED29116 A-2

Modulus arithmetic is similar to ordinary arithmetic:

((a1 modulo b) T (a2 modulo b)) modulo b

(a1%a2) modulo b

(a17ap) modulo b = (a; modulo b)*(a, modulo b) modulo b
However, division is a little more complicated. If
naj=na, modulo b
we cannot always cancel the n's and conclude
aj=ap modulo b.
What is true is that
aj=ap modulo (b/d),
where d is the greatest common divisor of 'n' and 'b' which we write as
d=(n,b).

Only if d=1 can we cancel the n's. That is, we can only divide by
numbers that are "relatively prime" to the modulus.

It proves useful to define a function which designates the number of
integers that are smaller than a given integer, 'm', and are relatively prime
to 'm'. We call this Euler's totient function and write it as "gD(m)".

If 'm" is a prime then g (m) = m-1.

If 'm' is composite such that

m = plal.p2a2.p3a3. pg2s for p1,p2.p3, ... ,Pg all prime,
then
P1-1 pp-1 p3-l ps-l
SD(m) = - . . R
P1 P2 P3 Ps

ADVANCED MICRO DEVICES <t

A-3 ED29116 A-3

We now have enough notation to state Euler's Theorem:

If (a,m) =1 then
aP(M =1 modulo m.
Euler's Theorem allows us to perform division with respect to a modulus

in a more general way than we discussed above. Suppose we want to solve for
'x' given this linear congruence with one unknown:

‘ax=c modulo m

Using Euler’s Theorem
ax=c'a?(m)modu10 m
and provided (a,m)=1 we may divide both sides by 'a' so that
x=c'a9°(m)'1 modulo m
and we can see that aqp(m)-l is the reciprocal of 'a' with respect to modulus

'm'.

One of the uses of Euler's Theorem relates to its application to the
Chinese Remainder Theorem.

ADVANCED MICRO DEVICES £

A-4 ‘ ED29116 A-4

The Chinese Remainder Theorem states that simultaneous linear congruences
in one unknown can be solved:

Let m; be k positive integers greater than 1 and relatively
prime in pairs. The set of linear congruences x=r; modulo mj
has a unique solution modulo M, where M=mp myem3e ... m.

The calculation of x from the ri's and mi‘s is called the
Chinese remainder reconstruction. It can be shown that

m m m,)
X =< M gp(l)rl + (M gp(2)r2 oot (M SP(k r modulo M.
Ml M2 Mk
That is, 'x' is obtained from a linear combination of the remainders:
X = A1r1+A2r2+ .o +Akrk modulo M

We can note that for x=1, all r;'s also equal 1. Hence we see that the
coefficients, A;, also sum to 1:

A1+A2+ oo tAL =1 modulo M
which 1is a useful check on the correctness of a set of such Chinese remainder

reconstruction coefficients which we may have calculated.

It will often be easier to calculate the coefficients of the ri's by
knowing that

(Ji_ifp(mi) modulo M = M | {;<;EL_§P(m1)-1 modu’lo "Hik
me: ms ms

1 1 1

where the equivalent expression on the RHS above can be calculated on a
machine with a shorter capacity for integers than is required for the LHS.

ADVANCED MICRO DEVICES {1

A-5 _ ED29116 A-5

An Example of Chinese-Remainder Reconstruction

Let us apply the above material to the problem of calculating the loca~
tion of an error burst detected by an Am9520/Am8®65 Burst Error Processor
using its 32-bit polynomial. In this case, the location in bits will be given
modulo 21 and 2047. These moduli have no common factors and hence are rela-
tively prime. We may expect from the Chinese Remainder Theorem that we can
calculate the location modulo M=21-2p47=42,987.

We will need the totients for the two factors:

12

21 is composite, thus (21) = $0(3'7) 21+ 3-1 - 7-1
3

7

1936

2047 - 23-1 - 89-1

2047 is also composite, thus SP(2@47) = 9?(23'89)
' 23 89

ADVANCED MICRO DEVICES &1

A-6 ED29116 A-6

To understand how to proceed to calculate the Chinese remainder
reconstruction coefficients, let us begin with the second coefficient:

m \P(m) a2 9g7) 1936
A, = LA <) = 211936 mod 42,987,

But 211936 -

65547269477777817757200969720480807996746850662145197381218624584202721941899507
2142389720238780593309470646052773630449471325474533908137360p441413238843120193
32585827514379333859761233117712533509551459443911208580632578963327992769384375
426p303605797022868768101123274979188007286483256198027628227259161757426(0963299
1079353828654476065310039978695543136316162542942814716679981146013950224728p241
48421990224184032422659001952950125889854620435176178676536304017189886727728577
664787628(08632533720316541630429665323923628823770688465926358082614916364897819
952996(899572134113382953519568833057929798189477222997485905(98799382(371499794
8139595475454059872041716565412107803394484(p12311848669835656(0103988760885806716
4940170812866184904914556373046948353051418043247(0512369426690573967032574682856
195057585513584015037(%2558533907289929937210320299658444316439393747438560146636
68039649829256742652205700p8871(0439478948136143462730131378420168689745030305135
303815065098302794868p9578859037463252657776488671886012947491670732595286632623
51238881264892457976606743296108336267285279283503060928469489247666663467542882
4287277439290877821192760404428p5556001 30652888690727539976402131080690579575162
33026218677122044778041620387985106584998777559109963128759282081825133237066491
1436020047886(00361996382633261586396135937933132836344735258625787607268p7117983
83504786413185684889586777243776418266864603084497027156863545962997632912488928
243826662382334402706574405391673300049977683952663871397985248099164723581467953
701228675(011166497323384469477079129219382(8517168298067784043392255318744545510
48987827341190p093854105444095401537664898756640898301015¢5881273123135229¢0137586
725619481049080897106183422055421072402516597446408p5787879248125748563346533914
492164990479226585182216298832046723822180625988601971981213095197105148p3739640
477320626(09858999542190657569218137188675174633600219492324116932670268519947893
951547824227912523391%3131937353661659594851341730694387344197857885617918745707
51567134183215224267935955780888418997411766677983604449691049545327112018360127
56862721010965881665681274008574228137556218007157472347276882319366231153287428
90393414227090838945939699975151036281 5¢00P4075438705477189761562777940953711229
20344720978570249941195753494856222496335355113341500070914900206483837650114413
19486308794026419003550913064591870p27487527693765073802654682863900464126535037
46847030398846937549187409894959831291292882913809459139940065827331105367368931
145226154528261622(07116348274817955572941952657616714150555124862263651922390721

No kidding! .o 2,560 digits.

ADVANCED MICRO DEVICES &%

A-7 ED29116 A-7

It is inconvenient to deal with such large integers. Thus it is clear
that doing the multiplications to get the 1936th power then reducing this
large result modulo 42,987 is a difficult route to get Ay. Since the power is
a relatively small number, we could alternately do one multiplication, reduce
this partial result mpdulo 42,987 and then repeat this process until we have
reached the 1936th power. By this route we will never have to produce a
partial result that exceeds (42,987-1)x21=902,706. This 6-digit integer is
within the range of a pocket calcylator. However, multiplying 1936-1=1935
times and reducing the result moduTo 42,987 each time is still more tedious

than necessary.

At this point it is useful to note that we can reach large powers rapidly
by repeated squaring. That is, to raise a number ‘'a' to the power 2" we just
square 'a' 'b' times: .

16 = 29 (((22)9)2)2

That is, we can get the 16th power by 4 multiplications rather than by 16-1=15
multiplications.

| 169876543210

1936 in binary is 11110010000
1

Thus 21936 = 219, 2% . 28 . o7 .,

which we can calculate by only (10+9+8+7+4)+4=42 multiplications and . by far
fewer multiplications if we can use the calculation of the smaller powers as a
start towards the larger powers.

ADVANCED MICRO DEVICES 41

A-8 : ED29116 A-8

- A1l of this can be consolidated in a short BASIC language program that
calculates integer powers by converting the power to binary and accumulating
the power by the squaring method while building the Targer terms from the
smaller:

2000 'Integer Power Subroutine
2020 'Calculates A=BASE"PWR mod M
2040 ‘'Alters BASE & PWR
2060 !
2089 A=1' initial partial result
2100 IF PWR MOD 2 = 1 THEN A = (A*BASE) MOD M
' update partial result if next bit of PWR is one
2120 PWR=INT(PWR/2)' right shift pwr
2149 IF PWR=(THEN RETURN' done if all bits of PWR have been used
2160 BASE=(BASE*BASE) MOD M' square again
2180 GOTO 2190

By the use of this program or other means we obtain

Ay = 4095 *+

il

And similarly we get Aj

12
(§212§Z> modulo 42,987
21

204712 modulo 42,987

38,893 **

Note that A{+Ao = 42,988 = 1 modulo 42,987 (as is expected for valid
coefficients). Of course, if we were absolutely sure of the value for Ao, we
could have obtained Ay from 42,988-A,.

Thus, if the error location was known to be 16 mod 21 and 1128'm0d 2047
then the location is

L = (38,893*16+4095*1128) modulo 42,987
= 40,021 (Checking: 40,021 = 1,905%21+16
& 40,021 = 19%2047+1128)

** Note: Am952(/Am8(65 data sheets show Ay and A, as above but
multiplied by 8 for convenience in using byte counts
rather than bit counts in calculating error locations.

ADVANCED MICRO DEVICES <1

ADVANCED MICRO DEVICES &1

ADVANCED MICRO DEVICES &1

	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Appendix A: Review of Number Theory

