= 1', -
L !’i!; . '
i

2 i

e
=

:

|

il,
i
.

.

1

§l||um.ﬂ -
S e
. .
.
-

v;I!

.
.

i
. ”'*
HiE
l
.
i

‘!
-

i
:

P

Ii

;il!!i

i

T
"I’i;;il !

1,"']'
'ii .

- 'n'Fm«|m»mhuumh|mmmmmrmuﬂml’mwm i
o

e
-

e
i
e

.

-

e ==u
L o
e
.
e
h'p.llsi

.]1,;1’

g

o

L
i

,!'i! .
{;]ﬁ
- 1
sl
;1,,..

“‘W

e
o
i !!
o

u--.lz
-

-

,1,1
.

G

i 11'

»-».-»w o

S
;:}1!;

o ;.ih
m i

.
i
.!.
-

.lml

-
'!

:
ﬁiﬁ' ’li’!h*!’!l
11 ;it f"il

. ﬁ!: |
u;hm.g;

o
i
.

= .
o i ix o
1;,1!"‘ 5 ;11'*11 |i|’!!

I

h*!i;!;

,.,|

- -

“i'l"‘ﬁ}i’ﬂi

H‘FW

Wﬂa&m‘

%
’ .
li'ﬂh . .
. . _ i

Illifiﬁili

|
" ’;if;i‘ii’;ii’d ‘ ']
-

Mﬁﬁ ,

.

';;;:!i; -

e
ili:;!;dLh'ﬂ? " I'!f.:;!f.‘!,:razr
.

-

.
"

i i!: l'"

T
G ﬂtl,x!i!“
-

TABLE OF CONTENTS

POSE Executable Statements 3-13
" g\lr:;?;gZ?ZZLON ANDPUR O 3-1 Executable Statements Using Format Names 3-14
Definition of TEMMS - .o oo e e e e e e eeeeeeaeeae e 3-2 Free Format Statement FF 3-14
Definition Phase (PHASE1) oo, 3-2 Overlaying Formats 3-14
Assembly Phase (PHASE2)oiit 3-2 Comment Statements 3-15
IPIEMERLALON -+ e v eeeeeeeee e 3-2 END ..o 3-15
Assembler Operationccavevrneiin.. 3-2 Arguments.............oo 3-15
Constants oo 3-15
. DEFINITION PHASE (PHASE1) 3.3 Constant Lengths 3-15
Definition Fileccocoomemmmrernmneens 3-3 Constant Modifiers 3-15
THITLE Lo 3:3 Expressions o 3-16
WORD ..o 3-3 Examples of Correct Constant Usage 3-16
END oo 33 Variable Field Substitutes 3-16
Printing Control Statements > Required Substitutions+ ... e |
LIST ..o 3.3 Substitution Separators 3-16
NOLIST oo 34 Fitting Variable Substitutes to Variable Fields 3-17
SPACE.... ..o 3.4 Paged and Relative Addressing 3-17
BJECT ..o 34 Hexadecimal Attribute3-18
Definition Statements AORAREEREE 34 Assembler Symbol Table 3-18
Definition Wordsoocovremrerennrenen.. 3-4 Assembler Entry Point Table 3-18
Fleldsoooovviinnrieee 3.4 Assembly File — Reserved Words 3-18
Designatonsoevuniiieaii e
FieldRules ..., 3-5 4. AMDASM 29 OUTPUT, FILENAMES, EXECUTION
NBMES © .ottt ea e 3-5 Filenames 3-19
Constants U N 3-5 Execution 3-19
EXPI@SSIONS ..o veesieeeeaneme e, 3-5 Disk Drive Designators 3-21
Definition WORdSovveneeearascomeneaeaeann., 3-5 Examples of AMDASM Execution 3-21
EQU .. oo 3-5 Submit Files 3-21
ggg 5 5 SAMPLE OF AMDASM 29 PROCESSING 3-22
Examples of EQU, SUB, DEF . e e 3-6 6. AMMAP 29 MAPPING RAM/PROM
Field Lengthscoovviiiooain 3-7 DATA ASSEMBLER
Constant Lengthsovvnecrerrammeaeiinai.. 3-7 AMMAP Description 3-26
CONtiNUANIONooeeneee 3-7 Major Functions of AMMAP 3-26
Comment Statements ..o, 3-7 AMMAP Performance Characteristics 3-26
Modifiers and Attributesoocoooiii... 3-8 Userinterface................................... 3-26
Modifier Precedenceocovveieiin 3-8 Program and Source Statement Concepts 3-26
Designators as Atiributesooveoeninno. 3-8 Assembler Directives B 3-26
FAtribute ... 3-8 Command Language 3-27
DONECArES ... veeeeeainarr e, 3-9 -
VATHADIES - ..\ e e e e e e e e 3-9 7. AMSCRM™ 29 BIT SCRAMBLING
Examples of Variable Fields 3-9 POST PROCESSOR
Definition File Reserved Words 3-10 AMSCRM Description 3-28
SAMPIE DENIIONS . .+« e e oo eene e eneneaeennnn, 3-10 Execution and Filenames for AMSCRM 29 3-28
Number of Permitted EQUs, DEFs, and SUBs 3-10 AMSCRM 29 Example 3-28
Horizontaltabscoovieiiine e, ..3-10 8. AMPROM™ 29 PROM PROGRAMMER
. ASSEMBLY PHASE (PHASE2) POST PROCESSOR
Assembly File Statenients 3-11 AMPROM Description 3-29
ContinUALIONvieirr it 3-11 PROM Organization 3-29
Labelsor Namesoovvmveneai, 3-11 Post Processing Features 3-31
Entry Point Symbolsocoviieiaiiiiiii, 3-12 Execution Command for AMPROM 29 3-31
Statement Typescovveemvernnnennne..... 3412 AMPROM filenames 3-32
Printing Control Statements 3-12 AMPROM Execution Examples e 3-32
TITLE e 3-12 Interactive AMPROM Input 3-32
LIS T o i e 3-12 Input Substitutes 3-33
NOLIST .. 3-12 BNPF Paper Tape Option 3-34
SPACE .. e e 3-12 Hexadecimal Paper Tape Option 3-34
EUECT oottt 312 9. EXAMPLE OF AMPROM 2035
Program Counter Control Statements 3-13
(9] = c TP 3-13 10. PROM PROGRAMMER SUBSYSTEM
RES it e 3-13 Subsystern Description 3-36
ALIGN i 3-13 PFormat Command 3-36
Constant Definition Statement 3-13 PPROG Command 3-36
EQU . it 3-13 ErrorStaius 3-37

TABLE OF CONTENTS (Cont.)

11. ERROR MESSAGES AND INTERPRETATIONS

AMDASMErrorsco.oo o 3-38
AMDASM Errors Which Halt Execution 3-40
AMSCRMErrorsc.ooioiniii .. 3-40
AMPROM Erorscooouuuoi . 3-41
AMDOS™ 29 ErMorsooveeeeiaanannnn. ., 3-42
APPENDIX A
Error Summary 3-43
APPENDIX B
AMDASM 29 Microcode Object File Format 3-44

LIST OF FIGURES

5-1 Am2900 Learning & Evaluation Kit
Architecturecciveiiiininnna.., 3-22

5-4
5-5
8-1
82
8-3
8-4
9-1

2-1
4-1

8-2

8-3
8-4

-148-

LIST OF FIGURES (Cont.) ;
Definition File 3-24

Fiow Chartof Example 3-25
Assembly Output in Biock Format 3-25
BitMatrix.......................... " 3-29
Sample PROMMAP 3-29
PROMMAPo. .. 3-30
Organization of PROMs 3-30
AMPROM 29 Output for AM2900

Learning and Evaluation Kit 3-35

LIST OF TABLES

Implicit Length Attributes of Constants 3-7
AMDASM 29 Options 3-2r
AMPROM 29 Options 3-31
AMPROM Input Substitutes 3-33
BNPF Paper Tape Contents 3-34
Hexadecimal Paper Tape Contents............ ... 3-34

CHAPTER |
< :
INTRODUCTION AND PURPOSE

An assembler is a program which reads another program
written in a symbolic form and produces an output of binary
words corresponding to the symbolic input. A microprogram
assembler is a special kind of assembler, formaily called a
meta-assembler. AMDASM 29 is a meta-assembler.

Ameta-assembler differs from an ordinary assembler in that most
of the symbols are defined by the user prior to the assembly
process itself. In an ordinary assembler, the user may define
{abels for instructions and symbois for particular data words, but
the instructions themselves, including their associated word
length and format, are generally already defined by the assem-
bler. This makes perfectly good sense in an ordinary assembler,
since the assembler is designed to convert an established set of
formats into machine language (ones and zeros) for a particular
machine such as the AMD Am3080A.

A microprogram assembler, however, must be far more flexible
than a traditional assembler, since it must be useful for many
hardware configurations. Each different hardware configuration
may require a different format and may require word lengths
(microinstructions) over 100 bits.

Moreover, in a microassembler, a format rarely establishes the
entire contents of a microinstruction, but rather defines only a few
bits of the total word.

These requirements imply that a microprogram assembier must
consist of two distinct operations. The first operation is estab-
lishment of word length and definition of formats and constants
(the Definition File). The second operation is the traditional as-
sembly process (Assembly File) performed on a program that
uses the formats and constants from the Definition File. The
microprogram assembler, therefore, differs from the traditional
assembiler in that it may be configured, by the user, to accept any
word size, formats and constants the user desires.

The assembler written by Advanced Micro Devices is a very
powerful meta-assembier, useful not only with the AMD 2900
family, but with any microprogrammed machine. The assembler
operates in two phases, the Definition Phase (PHASE1) and
the Assembly Phase (PHASE2).

The Assembly Phase is much like any assembler. it reads a
symbolic program, handles most common assembler features
such as labeling and setting the address counter, and produces a
binary output and various listings and cross-reference tables.
The Definition Phase is executed first to set up the table which
associates the user's format names and constant names with
their corresponding bit patterns.

The Definition Phase lets the user define symbols for formats
(format names), symbols for constants (constant names), and the
microinstruction word length. In the Definition File the length of
the microinstruction is defined first. The word may be any length
from 1 to 128 bits. This is adequate for all but the most sophisti-
cated processors.

Each of the user defined symbols has a specific bit pattern
associated with it. A format name is used to define all, or part, of
one microinstruction. The format definition may consist of:

@ Numeric figlds, which are defined to contain specific bit pat-
terns.

® Variables, which will be filled in when the format is invoked.

@ “Don't care” states.

Once the Definition Phase has been executed, its output may bek
retained and used by future programs.

A useful feature of the AMD assembler is that “don’t care” states
are retained until defined, which may not happen until after the
assembly process, during a third, or post processing, phase. A
listing of the microprogram at the conclusion of assembly shows
an ‘X' for every undefined bit. This is extremely useful during the
development process before the microword length has been
optimized by sharing fields.

Following assembly of the user’s program, a file is retained which
contains the assembled microprogram. This file is then available
for post processing to create paper tapes for PROM blowers. The
output utility can select columns and rows for a given PROMtape,
freeing the user from any restrictions regarding the organization
of the microprogram memory, and simplifying the generation of a
new tape for each of the many PROMs in the system.

The program to be assembled may be written using any of the
features specified during the Definition Phase. In the simplest
case, the Assembly Phase source program rmight be written
using just strings of ones and zeros, with the Definition Phase
consisting only of the microinstruction word length. At the other
extreme, the Assembly Phase source program may refer to
muitiple format names from the Definition Phase for each micro-
instruction. Any number of formats may be overlayed to define a
single microinstruction, as long as the defined or variable fields of
each format fall into the "don't care” fields of the other formats
invoked. A user might define, for example, a set of formats
specifying sequence control operations, another set for data
control, and a third set for memory control.

The AMD assembler has been written to maximize its flexibility
and ease of use for hardware designers. Every effort has been
made to make the program efficient on the machine and efficient
at the human interface, with a minimal knowledge of the host
machine's operating system required.

NOTE: Throughout this manual examples often refer to the
Am2900 Learning and Evaluation Kit shown in Chapter V.

CHARACTER SET

The following characters are legal in AMDASM source state-

ments:

@ The letters of the Alphabet, A through Z. Both upper-and
lower-case letters are allowed. Internally, AMDASM treats
all letters as though they were upper-case, but the charac-
ters are printed exactly as they were input in the source
files.

@ The digits O through 9

@ The following special characters:

Character Meaning

+ Plus sign
Minus sign
Asterisk
Slash
Comma
Left parenthesis
Right parenthesis
Ampersand
Colon
Dollar sign
Percent sign
Blank or space
Semicolon
B Period

cr Carriage return

e e~ o~ @ |

> R e

HT Horizontal tab

-149-

DEFINITION OF TERMS

Since there are no standard terms associated with microas-
semblers, the more common terms used in this manual are listed

below:

Term

A

Name or label

Constant
Constant name
Field

Format

Format name
Line

Modifiers
Attribute

Designator

Delimiters

Default values

Options

cr

Definition
Indicates a required blank character.

1-8 characters which are assigned a value
by the programmer or the assembly pro-
cess. Labels are used only in the Assembly
File.

A specific pattern of 1-16 bits.

A name for a constant.

A group of adjacent bits in a microinstruc-
tion.

A model for a microinstruction consisting of
fields which contain constants, variables,
and “don't cares”.

A name for a format.

An input line of up to 128 characters on a
console, teletype, a paper tape reader, or a
diskette file.

Symbols (# % : ~ $) which indicate that the
data given for a field is to be modified.

A modifier which is permanently as-
sociated with a field.

A symbol (V, X, B#, Q#, D#, or H#)
which indicates the type of field or
constant: variable (V), “don’'t care” (X),
binary (B+#), octal (Q#), decimal (D#),

or hexadecimal (H#).

A symbol (: A =, /) which indicates the end
of a name (: A =), the end of a field (,), or
the continuation of a statement (/) on
another lins.

The value which will be substituted if an
explicit value is not specified.

Choices available which indicate the
input and output devices to be used, the
type of output listing desired, and pro-
cessing of one or both phases (Definition
and Assembly).

Braces indicate that the enclosed para-
meter is optional.

Carriage Return

DEFINITION PHASE (PHASE1)
The AMDASM Definition Phase includes the following fea-

tures:

@ A name is a packed group of 1 to 8 characters.
® A name may be assigned to a constant value.

@ A name may be used to define a format whose fields are
given as variables, “don't cares”, explicit bit patterns (val-
ues), or specific addresses by using appropriate desig-
nators.

e Blanks may be used to improve readability.

@ Microword iength may be 1 to 128 bits.

@ Modifiers include inversion, truncation, negation, and des-
ignation of a field as an address field to be rightjustified
(placing a value in a field at the right with Isading bits set
to zero).

@ The ability to set a “page” size via the. aftribute $. This
permits error detection when the Assembly Phase calls for
a jump or branch to an address which is on a different
page of the microcode.

Data from the Definition Phase may be retained for use with
subsequent Assembly Phase source programs and/or it may
be modified as desired.

ASSEMBLY PHASE (PHASE2)

The Assembly Phase provides for input of the microprogram
source statements, conversion of format and constant names
to their appropriate bit patterns, substitution of values for vari-
able fields in the format, and generation of listing and binary
output. The assembly source program will use references to
format names and constant names from the Definition File. It
will also contain statements which associate labels with ad-
dresses, control assembler operation, and provide program
location counter control.

The assembly process provides the user with the following
features:

@ A microword may be assembled by referring to one or
more format names from the Definition File.

@ A microword whose format was not specified in the Defini-
tion File may be specified by using the built-in free-form
format command.

@ The programmer may control the program location counter ,
fo set the origin and/or to reserve storage. {

® The programmer may choose one of four different output
listing formats.

@ A constant or a variable field may be defined using values
and/or expressions.

@ Errors are detected and listed. Severe errors cause pro-
cessing to hailt. -

Output of the Assembly Phase is an object file which contains
the complete microprogram. Post processors can directly con-
vert this object file to any form needed, such as hexadecimal
or BNPF punched on paper tape.

IMPLEMENTATION

AMDASM 29 operates on the Advanced Micro Computers' Sys-
tem 29 under the AMDOS 29 Operating System.

ASSEMBLER OPERATION

AMDASM is placed into execution by control statements from
the console input device.

The Definition File is processed in PHASE1 and if it contains
no errors the Assembly Phase begins. PHASE2 Pass 1 as-
signs values to Assembly File labels and allocates storage.
PHASE2 Pass 2 translates the Assembly File source program
into object code.

User-selected options determine whether the Definition Phase /
is to be executed or if a previous execution of that phase hasi\,
already established the table of formats on a file which will be
used by the assembly process.

The AMDOS 29 operating system allocates all necessary input
and output resources, such as files, automatically.

-160-

CHAPTER Il
DEFINITION PHASE (PHASE1)

The Definition Phase allows the user t0 defing the microwqrd
length, constants, and formats which he will use to write
source programs for his target machine.

DEFINITION FILE

The definitions are inpu via a sequence of inslructi'onsv called
the Definition File whose content includes the following items:

TITLE (heading to be printed on output listing)
WORD n (defines microinstruction word length)

Printing control statements
Definition statements
Comment statements

END

The control statement WORD must appear as the first state-
ment in the Definition File after the optional TITLE statement.
The END statement must be the last statement in the Definition
File. -

The other statements (shown boxed) may be interspersed
throughout the body of the file.

To facilitate readability, blanks may appear in most parts of these
statements, although no blanks are permitted between the letters
of the control words TITLE, WORD, END, LIST, NOLIST, DEF,
EQU, or SUB. An entire blank line may be inserted by entering a
semicolon and a carriage return.

TITLE

if the user wishes to have a litle printed on his Definition File
statements, the first statement input should be TITLE. The
general form is:

Form:

TITLEA title desired by user

TITLE must:
@ Begin on a new line)
e Be followed by a blank and a maximum of 60 characlers.

WORD
WORD must be the first statement énpui.by the user after the
optional TITLE is given. its general form is:

Form:

WORDAN

WORDA must be followed by a decimal integer value n which
indicates the microword size in bits (range 1-128).

WORD must: ' ‘
e Be followed by at least one blank and 1 to 3 decimal di-

gits. o
e Be the first input line (second input line if TITLE was usad).

e Begin con a separate line.
If WORD is omitted, assembly will halt as the Definition Phase
must know the size of the microword in order to proceed.

END

END indicates the end of the Definition File. If END is omitted an
error message will be printed but processing will continue. The
general form is:

Form:

END

END must:

® Begin on a new line.
& Be the last statement in the Definition File.
o Be followed by a carriage return.

* PRINTING CONTROL STATEMENTS

Printing control statements are used to control printing.

TITLE was listed separately since it must be the first state-
ment input if it is to be printed at the top of the first page of
the cutput. TITLE may be used elsewhere (i.e., interspersed
with the statements shown in the box) in which case it causes
this new title to printed at that position in the output file.

A description of the other printing control statements, LIST,
NOLIST, EJECT and SPACE.

LIST

LIST indicates that the following statements are to be printed
whenever printing of the' Definition File input is requested. This
feature will be most useful when correcting or modifying a Defini-

- tion File. (AMDASM selects LIST as the default option. NOLIST

must be specified if the user does not wish to print his Definition
File source statements.) The general form is:

Form:

LiIST

LIST must:

e Begin on a new line.

e Be followed by a carriage return.

@ Precede the Definition File statements which are to be
printed.

@ Be interspersed between complete definition staterments.

NOLIST

NOLIST turns printing off, and no printing of the Definition File
input statements will ocour until LIST is encountered. How-
ever, any source sfatement containing an error will still be
fisted.

Form:

NOUIST

NOLIST must:

e Begin on a new line.

e Be followed by a carriage refumn.

e Precede the Definition File statements which are not to be
listed.

e Be interspersed between complete source siatements.

-16%-

SPACE

SPACE indicates that the assembiler is to ieave n blank linos
before printing the next source statement. The general form 1.

Form:

SPACEA n

SPACE must:

e Begin on a new line.

e Be followed by A and a decimal digit indicating the number
of succeeding lines to be left blank.

e Beinserted in the Definition File at the point where the spaces
are desired.

EJECT

When EJECT is encountered, the assembler generaies blank
lines on a list device so that any previous lines plus the blank
lines equals the specified “page” length (default is 66 lines). It
then begins a new “page”, headed with the title. On a printer
a new page is ejected. The general form is:

Form:

EJECT

EJECT must:
e Begin on a new line.
e Be foliowed by a carriage return.

DEFINITION STATEMENTS

Definition staterents are used to define constants, full microword
formats, or partial microword formats. The general form of these
statements is: .

Farm:

name: definition word A field1, field2, . . ., fieldn
or
constant

DEFINITION WORDS

The definition words and their funclions are:

EQU is used to set a name equal to a bit pattern
DEF is used o define a format for a microinsiruction
SUB is used to define a format for part of a microinstruction

A complete explanation follows the section defining fields, des-
ignators and constanis (page 5).

FIELDS

A field is a contiguous group of bits in a microinstruction (such

as branch address, next instruction conirol, etc.). Each field

may be ons of three types:

e A constant field whose content is a fixed value or a fixed
bit pattern, (for example, the next instruction control).

e A variable field whose content will contain different bit pat-
terns in different situations (for example, an address field).

® A don't care field whose content is not used in this format
(for example, the address field for a continue instruction).

The type of data in a particular field is indicated by using "des-
ignators™. G

DESIGNATORS

Permissable designators and their meanings are.
Designator Meaning Exampie
B# A constant or field whose con- B#101(three

fents will be represented 'using pits 101).
binary digits (0 and 1). Each
digit = has an implicit length
of one bit. :

Q# A constant or field whose con- Q#32(six Dbits
tents will be represented using 011010)
octal digits (0 through 7). Each
digit has an implicit length of
three bits.

D# A constant or field whose con- D#4 (three
tents will be represented using bits 100}
decimal digits (0 through 9). For :
a constant name definition using 3D#6 (three
EQU, the implicit length for bits 110)
decima!l numbers is the number
of bits needed to represent
the number in binary. Thus, D#3 has an
implicit length of 2, D#4 has an implicit
length of 3. For fields in a format (DEF or
SUB), the D# must be preceded by de-
cimal digit(s) giving an explicit length
(number of bits) for the fieid.

H# A constant or field whose con- H#8A

tents will be represented (eight bits
using hexadecima! digits _ (0 10001010)
through 9, A through F). Each
digit has an implicit length
of four bits.

X A “don't care” tield. X must be 4X (4 bit
preceded by decimal digit(s) “don't care”
giving an explicit length for fieid).

this field (i.e., the bit length)

Vv A variable field. V must be pre-
ceded by a decimal digit(s)
giving an explicit length for this
fiald (i.e., the bit length).

When a designator B#. Q#,
D# or H# s gwven after a
V. it becomes a permanent atlri-
bute of that field and the
assembler assumes that any value
specified for that field will
be given in digits appropriate
to that designator.

These permanent designators for
variable fields may be over-
ridden when using the format
during the Assembly Phase. If
a variable field has no
designator given, It defaulis o
binary. For example, if all var-
iable fields are given as nVQ#
in the Definition Phase, all
values for this variable field
that are octal may be written dur-
ing the Assembly Phase by writing
only the necessary octal digits.
The content of a variable field may be
given during the Definition Phase. The V
designator may be foliowed by the B#,
Q#, D#, or H# and these may be fol-
lowed by appropriate digits called the
default value for this field.

Thus, 6VQ# indicates a 6-bit
variable field whose contents will
be given in octal. 6VQ#35 indi-
cates that if no value is sub-
stituted in the Assembly Phase,
this variable field should assume
the default value 011101,

NOTE: The designators B#, Q#, D#, H# must have no
blanks between the letter and the #. The desired value for the
field is then given in the appropriate digits as shown in the
examples.

6V (six bit
variable field).

-162-

FIELD RULES

Each field foliowing a definition word must:
e Contain a maximurn of 16 bits unless it is a “don’'t care”

ield.

e gzljfoliowed by a comma unless it is the last or only field
following the definition word.

e Define a constant field using the designators B#, Q#, D#,
or H# and the appropriate digits.

or

@ Be a variable which gives a bit length and the designator
V. if no designator follows the V, the field type defauits to
binary.

or

e Be a “don't care” which contains a bit length and the des-
ignator X.

or
e Be a constant name or subformat name which has been
previously defined.

NAMES

Names may be user-defined constant names, format names, or
subiormat names.

Names must:

Be the first element in a statement. _
Begin with an alphabetic character (A-Z) or a period (.).

Be terminated by a colon (:).) ‘

Contain a maximum of 8 characters not including the colon.
Not contain any embedded blanks.

Be followed by EQU, DEF or SUB. .

Contain only alphabetic characters (A-Z), a period (.) or the
digits (0 through 9) in positions 2 through 8.

@ 0 @ ® @ ® B

Names may:

e Contain more than 8 characters but will be truncated after the
first 8 characters.

e Be preceded by blanks.
e Be followed by blanks after the : and before the EQU, SUB, or

DEF.
Examples of proper names are:
NUMBER:

. SHIFT:
REG.3:

improper names are:

= ADD (special character used)

SHIFT LEFT: (embedded blank, more than 8 characters)

3MUXCNTL: (first character not A through Z or period)
CONSTANTS

Constants are used to associate a name with a value or fo
define a specified fixed bit paitern.
Constants may be expressed by using designators and the
appropriate digits.
For example

Q#62)
defines the bit pattern 110010. This ty.pg of constant ha‘s an
implicit bit length of 6 bits (each octal digit represents 3 bits).

It a decimal digit precedes the designator, as for example in
4H#5

the 4 represents the explicit length of the field, and the bit pat-

tern is 0101. .

Explicit and implicit lengths are more fully defined later in this
chapter.

Constants must be represented in 16 bits (i.e., 2'® —~ 1
maximum). The permissible forms for constants are:

Permissible
Form Digits Meaning
n 0 through 9 Decimal value (default form)
B#n Oori Binary value
0 through 7 QOctal value

Decimal value
Hexadecimal value

D#n 0 through 9
H#n 0 through 9
or A through F

i
i Q#n
i
]

where i represents optional digits specifying the explicit length.

EXPRESSIONS

When a field contains an expression, the expression may use
designators and/or digits or labels as well as operators.
Operators permitted in expressions are:

Operator Description

+ Add the value of the left operand to the
value of the operand on the right of +

- Subtract the value of the operand to the right
of the minus (~) from the value of the operand
on the left

] Multiply the left operand by the right operand

/ Divide the operand on the left (dividend) by
the operand on the right (divisor)

All expressions:

e Are evaluated from left to right. There is no hierarchy for the
operators and no parenthesis for nesting are permitted.

@ Must result in a value which is a positive constant.

e Are calculated using integers; remainders are discarded.

DEFINITION WORDS

The definition words EQU, DEF and SUB are described in de-
tail in this section.

EQU

EQU is used to equate a constant name to a constant value or
expression. The general form is:

Form:

name: EQUA constant (or expression)

This equates the characters given in the name position to the
value of the constant or expression. Only one expression or
constant is permitted following the EQU.

The following sets the name R12 equal to the bit pattern 1100:

R12:EQUAH#C

-163-

Future references to the bit pattern 1100 (register 12) may be

made by using the name R12.

The defauli type is decimal if no designator follows the

EQU. (R10:EQUA10 assumes the bit patiern 1010, implicit

length 4 bits).

Each EQU must:

e Begin on a new line.

@ Begin with a name:

e The name: must be followed by EQUA (blanks between :
and EQU are optional).

s Contain a constant, expression or a constant name which
represents a bit pattern.

e Define a value which can be represented in 16 bits (2'®
—1 maximum).

Each EQU may:

o Be followed by a semicolon and comment after the constant
or expression.

e Be continued on additional lines by using / (slash) as the first
nonblank character in those fines.

e Be used in the Assembly File as well as in the Definition File.

DEF

DEF is used to define a complete microword format establishing
the contents of unvarying portions of the microword and estab-
tishing the position and length of variable and "don't care" fields.
in addition, default values for variable portions ofthe word may be
specified. The general form is:

Form:

name: DEFA field1, field2, . . ., fieldn

Each DEF must:

e Begin on a new line

Be preceded by a name:

s Be followed by one or more blanks, then fields separated by
commas.

@ Have the sum of the lengths of all fields exactly equal the
microword length specified by WORD.

e Begin on a new line

& Specify every bit in the microword in terms of constants,
“don't cares”, or variables.

@

A DEF may:

e Contain blanks between name: and DEFA.

e Be continued on additional lines by using a/ (slash) as the
first nonblank character in those lines.

e Be followed by a semicolon and a comment after any full field
is defined.

e Contain (in any field) a subformat name or constant name
which has been PREVIOUSLY defined.

e Containavariable, “don’'tcare”, constant or expressionin any
field.

e Contain a variable field which specifies a defauit value for the
field. The default value may be a constant or a “don't care”.

e Be overlayed on “don't care” fields with another format to
obtain a complete microword during the Assembly Phase.
Overlaying on other than “don’t care” fields will result in
errors, so this feature must be used with care.

SuB

SUB s used to define a subformat which is the format of a portion
of the microword. A subformat is the same as a format except that
it contains fewer bits than the full microword. The fields may be
constants, variables or “don’t cares”. its general form is:

Form:

name: SUBA field1, field2, . ., fieldn

Each SUB must:

e Be preceded by a name:

e Be followed by one or mare blanks, then fields separated by
commas.

e Precede the DEF in which it is first referenced.

Begin on a new line.

e Not be used in the Assembly File.

A SUB may:

e Be less than a microword length in bits.

e Be continued on additional lines by using / (slash) as the first
nonblank character in those lines.

e Be followed by a semicolon and a comment after any com-
plete field.

e Contain {for any field) a constant name that was PREVI-
OUSLY defined, or a constant, expression, variable, or “don't
care” specification.

@

A SUB will be useful when several formats contain identical
adjacent fields. In this case, the subformat name may be used in
each DEF whenever these fields occur.

EXAMPLES OF EQU, SUB, DEF

An EQU is used to associate a bit pattern with a symbol (constant
name); one example is:

R2: EQUA B#010

This defines the name R2 as a 3-bit constant with the bit pattern
010. Whenever the symbol R2 is used, the bit pattern 01 0 will be
substituted.

A SUB might be:
SHFTRT:SUBA 3V, B#10110, 5X

This defines SHFTRT as a subformat with a 3-bit variabie field
(3V), a 5-bit constant field (B#10110), and a 5-bit “don't care”
field (5X) for a total of 13 bits.

A DEF is used to associate bit patierns with a symbol (format
name). One example is:

ADD: DEFA 3V, B#10110, 5X, B#0011, 4X, B#010

This defines ADD as a format with a 3-bit variable field (3V), a
5-bit constant field (B# 10110), a 5-bit “don't care” field (5X), a
4-bit constant field (B#001 1), a 4-bit “don’tcare” field (4X),anda
3-bit constant field (B#010). This gives a total microword length
of 24 bits.

Alternatively, the same format name could be written using the
subformat name (SHFTRT) and the constant name (R2) previ-
ously defined by writing:

ADD: DEFA SHFTRT, B#0011, 4X, R2

-154-

Another examp:e of an EQU is:
TWOK: EQUA 2048

This assigns the bit paitern 100000000000 and a length of 12 bits

o the name TWOK. The 2048 is assumes to be decimal and the
length is taken from the rightmost bit through the leftmost bit in
which a 1 appears.

Thus,

EIGHT: EQUA 8
yields the bit pattern 1000 with a length of 4

Aliernatively, by using different designators, the constant
TWOK: EQUA 2048
could be written:

TWOK: EQUA B# 100000000000
TWOK: EQUA Q#4000
TWOK: EQUA H#800

All of these yield the bit pattern 1 00000000000 and alengthof12.

FIELD LENGTHS

Each field may be given an explicit or imp!icii.lengﬂ"\..An
explicit length is indicated for a fieid by using decimal digit(s)
before the designator. The maximum length is 16 bits except for
don't care fields whose maximum length is the microword size.

hus,
3B#101
indicates a field with an explicit length of 3 bits.
Decimal, variable or “don’t care” designators require an
explicit length before the designator D#, Vor X.

“Don't care” or variable fields require an explicit length since
they do not, necessarily, initially contain a definite bit pattern.
Decimal fields in a format or subformat require an explicit
length since there is no direct correlation betyveen the num'ber
of decimal digits given and the number of binary bits desired
for this field.

Example Description

4V Defines a variable field with the explicit length of
4 bits.

5D#16 Defines a constant field with the explicit length of
5 bits and the bit pattern 10000.

R3:EEQUAS Defines a constant using the default type decimal,

value 5. The implicit bit length is 3.

CONSTANT LENGTHS

A constant may have an implicit or an explicit length. An
explicit length is given by placing the bit length (in decimal
ligits) before the designator. Thus,

B:EQUA4D#8
has an explicit fength of 4 and the bit pattern 1000.
If an explicit length is not given, the constant is assigned an
implicit length determined by the designator used.

Table 2-1
implichk Length Attributes of Constants

implicit
Length

Binary

Constant Value Description

AB:EQUAB#1000 4 1000 Each binary digit yields
an implicit length of 1 bit

per digit.

BB:EQUAQ#10 6 001 000 Each octal digit yields an
impilicit length ot 3 bits
per digit.

CB:EQUAH#10 8 0001 0000 | Each hexadecimal digit
yields an implicit length
of 4 bits per digit

The 12 is assumed to be
decimal, and the implicit
fength is counted from
the rightmost bit through

the leftmost 1.

DB:EQUA12 4 1100

EB:EQUA4 3 100 Same as above. Impilicit

tength 3.

CONTINUATION

Any statement may be continued on additional lines by placing
a/ (slash) as the first nonblank character in those lines.

A continuation must:

e Have a slash as the first nonblank character in its line.

e Preferably be indicated after a complete fieid (including the
comma) has been given on the preceding line.

e Never occur between the designators B, D, Q, or H, and the #
sign.

Examples are:

SHFTRT: SUBA 3V, B#10110,
15X

ADD: DEFA 3V, B#10110, 5X%,
/B#0011, 4X, B#010

COMMENT STATEMENTS

A comment statement is used to provide information about pro-
gram variables or program flow. The general form is:

Form:

; comment text

A comment may be a full or a partial line. All data from the
sernicolon o the end of the input line is ignored by the assembler.

Comments must:

@ Begin with a semicolon.

@ Be placed after a complete field if used within a DEF or SUB, in
which case subsequent fields for that DEF or SUB must begin
on a new line with a / (slash) indicating that they are a continua-
tion of this DEF or SUB.

“155-

For example:

1. SHFTRT: SUBA 3V, ; this is a shift right subformat
2. / B# 10110, 5X; which is continued on a second line
3. ; the ADD given below is a complete microword format
4. ADD: DEFA SHFTRT, B#0011, 4X, R2

5. : total number of bits for SHFTRAT is 13

6. ; the bit pattern for SHFTRT will be substituted

7. ; in the ADD given above

Statements 3, 5, 6, and 7 are full comment lines. Statements 1
and 2 are statements to be processed but all characters after the
‘semicolon’ will be treated as comments. The SUB begun in
statement 1 is continued in statement 2 where /' indicates con-
tinuation.

MODIFIERS AND ATTRIBUTES

Modifiers are placed after a constant or after the designator V.
When placed after a constant they alter only the value given.
When used afier a V, the modifiers are called attributes of
that field and are permanently associated with the field. Attri-
butes will modify any default value given with the variable field
in the Definition File and they will modify any value substituted
for this variable field when the format name is used in the As-
sembly File.

Permitted modifiers and their actions are:

Modifier Action Performed on Constants or Default Values
* Inversion (one’s complement)
- Negate the number {two's complement)
Truncate on the left to make the value given fit into
the number of explicit bits for this field.
P This field is to be considered an address field. Any

value given is to be right-justified in the field and any
bits remaining on the left are to be filled with zeros.

$ The field is treated as an address within a “paged”
memory organization. This attribute permits sub-
stitution in this regard and initiates out-of-bounds
page checking logic. Used only with variable fields
as an attribute (may not follow a defauit value).

Examples of correct use of modifiers with constants:

Example Description
D#5= Yields bit pattern 010 (101 (5) is inverted).
B#0101~— Yields bit‘pattern 1011 (0101 is two's com-
plemented).
6Q#357: Yields bit pattern 101 111 (the left bits 011 (3) are
truncated).

12H# A5% Yields bit pattern 0000 1010 0101 (the A5 is right
justified in a 12 bit field).

Examples of incorrect fields due to ommision of modifiers:

Example Description
4B#101 Explicitlength is 4 bits, only 3 bits follow the B # but
no % sign (indicating right justification) is given.
5Q#34 Explicit length is 5 bits but the 34 generates 6 bits

and no : has been given to indicate that the leftmost
bit is to be truncated.

Modifiers must:

e Appear after the value of a constant (i.e., 12H#4C% or
5Q#37:).

® Appear after the V but before the (optional) default vaive for a
variable field (12V%Q# 46), if they are to be permanent atiri- {:
butes of the field. The % and the Q# become permanent
attributes of this variable field and are aiso modifiers of the
default value. To modify only the default value, modifiers must
follow the value (12VQ#46%).

@ Not appear with “don't cares” (e.g., 3X% is iliegal).
The modifiers #and — may not both be used for the
same field.

A more detailed description and examples are given in Chapter
.

f

MODIFIER PRECEDENCE

Modifiers or attributes may appear in any order but will always
be processed in the following order:

Modifier Description
2 OF~ Inversion or negation
% Right justification
: Truncation
5 Paged addressing

DESIGNATORS AS ATTRIBUTES

Variable fields may use the B#, Q#, D# and H# as attri-
butes. Once given, B#, Q#, D# and H# are permanently as-
sociated with that variable field unless overridden. if a variable
field has no radix base specified, it will default to binary. (

If the user always wants to input assembly variables in octal, each
variable field in the Definition Phase should be written as nVQ#.
Then, in the Assembly Phase the value for this field may be given
as, 27, and the program will assume that these are octal digits. If,
in the Assembly File, octal is not desired, the field in the Assembly
File program could be written as B#010111, or H#27, efc., to
override the octal attribute.

If a variable field is defined with a default value (4VH#C), the
designator (H#) becomes an attribute of that field.

The attribute H#, if given with a variable field in the Definition File,
may need to be repeated in the Assembly File. This is necessary
since the program can not distinguish hexadecimal values which
begin with A through F from names, which may also begin with
the letters A through F.

§ ATTRIBUTE

The $ attribute may be used only with variable fields to indi-
cate paged addressing.

When the $ is given with a variable field, the % and : attri-
butes are automatically set for that field.

The § will indicate that this is a field whose remaining upper
(leftmost) bits are to be truncated and compared with the cor-
responding bits of the current Program Counter.

if the truncated bits do not agree with the corresponding bits of the
PC, an error occurs.

The desired length of the “page” is determined by the number of
bits given as the width of this variable fieid.

-1566-

Thus, if a “page” is to be 256 words oe=p, the variable field
would be defined as 8V$. Any value susstituted for this field
will be truncated on the left and the remaming eight right-hand
bits will.be substituted into the field. If ine truncated left bits
io not agree with the corresponding bits of the current pro-
Jram counter value, the substitution would anempt to produce
2 jump to another page; thus an error message is generated.

“DON'T CARES”

A“don'tcare” is used to indicate the bits (a field) whose state (bit
pattern) is irrelevant in this microword instruction.

The general form is:

Form:

nX

where

n is the number of bits (in decimal), and X indicates “don’t
care”.

“Don't cares”:

® Are printed as an X in the Assembly Phase output.

e May be assigned the value 0 or 1 during the post processing

phase. o
@ Are the only fields which may be greater than 16 bits in

length.

@ Are the only fields in a format which may be overlaygd
(or'ed) with another format which contains a constant in
the same field.

/ARIABLES

Variables are used to define microword fields. who;e contents
need not be assigned until assembly time. A variable field may be
assigned a default value in the Definition File. The general forms
are:

Form:

nv

nV attributes

nV aitributes default-value

nV attributes default-vaiue modifiers
nV default-value modifiers

A variable field must:

e Be preceded by an explicit length {n) which gives (in decimal)
the bit length of the field. (n < 16)
Contain a V after the length.
End with a comma (,) if another field follows it.

e Contain a % after the V if an expression or thg program
counter is 10 be used as a substitute for this field in the

Assembly File.

A variable field may:

. Contain atiributes (immediately after the V), such as in\{ersion
{#), which will always invert any value given for this field.

e Contain a designator given with or without a default value
which will automatically determine the default type for this
field.

@ Contain a default value given in binary indicated by (B#),
octal (Q#), hexadecimal (H#), or decimal (D #) followed by
the desired digits.

@ Contain modifiers after the default value. These modify only
the defauit value and are not permanently associated with this
variable field.

® Contain a default value given as X (indicating “don't care”) if
the user wishes to overlay this field during the Assembly
Phase.

e Contain either a default value of “don’t care” or an explicit
default value (bit pattern) but not both.

Examples of the correct use of variable fields with a default vaiue
of “don't care” are:

3VvX
3veX
3V-%X
3Va X

EXAMPLES OF VARIABLE FIELDS

Field
Content Meaning
3V A 3-bit field. The content is variable and will be

supplied when this format name is used in the As-
sembly File. The field type defaults to binary.

3VQ# A 3-bit field whose content is variable. The con:
tent will be supplied when the format name: is
used during the Assembly File. The content may
then be given as one octal digit without using: the
designator Q#. If the content is to be given.in bi-
nary, decimal, etc., then the designator B# or D#
would be placed before the digil(s) given in the
Assembly File.

3veg A 3-bit field whose content is variable. Any value
given for this field within the Assembly File will-au-
tomatically be inverted and right-justitied. Since no
designator is given, the field defaults to binary. if the
content is to be given in octal, etc. in the Assembly
File. the appropriate designator (Q#, H#, D#) must
precede the digit(s).

3va#5 A 3-bit field whose content is variable. if no value
is specified for this field in the Assembly File, it will
assume the default value (specified as Q#5) bit

pattern 101.

3VQ#5e Is the same as above but the 5 is inverted to yield the
bit pattern 010. Values substituted for this field dur-

ing the Assembly File are not autornatically inverted.

Ve Q#5 Yields the same pattern as 3VQ# 5«but, in addition,
any value substituted during the Assembly File for
this field will aiso be automatically inveried since

the = follows the V rather than the 5.

Yields a 3-bit variable field with a default value of 5,
inverted, then inverted again by the = following the V.
The resulting bit pattern is 101. Any value substituted
for this field in the Assembly File wil! be inverted.

3VeQ# 5=

To summarize, atiributes placed immediately after the V are
permanently attached to this field and will operate on any default
value given with the field as well as any value substituted for the
field in the Assembly File.

Modifiers placed after a default value apply only to the default
value.

-167-

Examples of incorrect variable fields are:.

Field

Content Description

IVH#T The H#7 yields 4 bits. No : was given to indicate that
the left bit should be truncated to fit the 3-bit field.

3:VH#7 The:isinanincorrect position. it should be 3V:H#7

or 3VH#7: (depending on whether the truncation is
apermanent field attribute ora modifier of the defauit
value H#7).

in short, attributes must be placed immediately after the V. Mod-
ifiers must be placed immediately after the digits given for the
default value.

DEFINITION FILE RESERVED WORDS

The following words are used during the assembly phase as
assembler control statements and may not be used as format
names or constant names in the Definition File :

ALIGN EQU NOLIST SPACE
EJECT FF ORG TITLE
END LIST RES

SAMPLE DEFINITIONS

Some possible ways of defining a few of the fields and for-
mats for the Am2900 Learning and Evaluation Kit (see Figure
5-2) are:

R2:EQUAH##2

Registers
R11:EQUAH#B
CONT:DEFA4X, B#0010,24X Next instruction
BREGFEQOU:DEFA4VH#,4D#12,24X | control

Registers 2 and 11 are defined as 4 bits, with the assigned
values 2 (0010) and 11 (1011), respectively.

CONT (continue) defines only the four bits (shown as 27-24in
Figure 5-2) with the pattern 0010. All other bits are left as dont

cares.

BREGFEQO (Branch Register if F = 0) defines the four bits .
{bit numbers 31-28 in Figure 5-2) as a variable field, to

given a value during the Assembly Phase using hexadecima:
digits. The next four bits (bit numbers 27-24 in Figure 5-2) are
given the constant pattern 1100 (value 12). All other bits are
don’t cares.

NUMBER OF PERMITTED EQUs, DEFs, AND
SUBs

There is no fixed maximum number of EQUs, DEFs or SUBs
because AMDASM stores all data dynamically. The user of a
32K-byte system has available, in PHASE1, approximately 10K
bytes for variable storage; PHASE2 has approximately 8K bytes.

PHASE1 allocates:
12 bytes for each EQU
12 bytes for each format or subformat name
4 bytes for each field in a DEF or SUB

PHASE? allocates:
12 bytes for each format name, constant name and label
4 bytes for each format field

HORIZONTAL TABS

A horizontal tab may be entered for readability as the user inpuis
his source files. The assembler places the character following the
horizontal tab at the next tab position. Tab stops begin wif"
position 1, and occur every eight positions thereafter as follow.
position 1, 9, 17, 25, etc. Thus if data is input at character position -
5, a tab will place the next character input at position 8. However,
if data is input at character position 17, a tab will place the next
character at position 25.

Horlzontal tabs may be used in both the Definition and As-
sembly Files.

-188-

CHAPTER Il

ASSEMBLY PHASE (PHASE2)

‘he Assembly Phase reads in the source program statements,
assigns values to labels and constants, then tr@nslaies the
source program's executabie staternents nto a binary format.
The Definition Phase output (a table of format and constant
names and their associated bit patterns) is used for this transla-
tion.

The user must input his source program statements in the order
corresponding to the desired order of his executab!e §tatements4
The user may allocate blocks of storage, control printing, and s_ei
the program counter via nonexecutable assembler control in-
structions which are interspersed with, and do not affect the order
of, his executable statements.

The abject code is input via a sequence of inslructipns called
the Assembly File whose content includes the following:

TITLE (heading to be printed on the putput listing)

Printing control words
Program counter control words
Constant definition word
Executable staterents
Comments

END

‘he optional TITLE statement is usually input first so that the
desired title appears on the first output page.

The other statemenis (shown boxed) may be interspersed
throughout the body of the file. However, the execuiable
statements must be input in the order that corresponds to the
desired sequence of the object (rnicro) code.

The END statement must be the last statement in the Assem-
bly File.

The permissible Assembly Phase statements are:

TITLE
LIST
NOLIST
SPACE
EJECT

Printing control words

ALIGN
EQU Constant definition word

Free form definition word {0
establish a microword content

ORG
RES Program counter control words
FF }

References to format names from the Definition Phase
Comments }Used for documentation and program flow.

END } End of the Assembly File.

None of the control words (LIST, ORG, etc.) or format names may
contain blanks.

ASSEMBLY FILE STATEMENTS

Each statement contains an optional label followed by a
slatement type. Some statement types must be followed by
an argument which may be a constant, a constant name, or
an expression.)

The general form of all Assembly File statements except
comments is:

Form:

. control word
label:
.t format name
name:

definition word

Aarguments }

CONTINUATION

Any statement may be continued on additional lines by placing
a/ (slash) as the first nonblank character in those lines.

LABELS OR NAMES

Labels or names are packed groups of letters and/or symbols
which have an associated value.

Labels are permissible with executable statements and names
are required with the definition word EQU.

Form:

name: definition word
or
label: format name

A name or label's value is determined by the statement type
which follows it. Thus, i

name: EQUAN -

equates the symbol “name” with the value given for “n",
while
label: format name A VFS, VFS ...

equates label to the current value of the program counter, so that
reference may be made to this location in the microcode by using
this label.

A label or name must:

e Beginwith an alphabetic character (A through Z) or period {.).

e End with a colon.)

@ Contain no more than 8 characters, exclusive of the colon.
(Excess characters are truncated on the right.)

e Contain no imbedded bianks.

e Each be unique. If duplicates are given, the value given atthe
first occurrence is used and a warning message is issued for
each duplicate.

A label or name may:

e Precede an EQU, RES, ORG, FF, or an executable in-
struction

@ Be used as a variable field substitute (VFS)

e Be used as a field in an FF statement

@ Not be a reserved word

@ Contain only the letters A-Z, numerals 0-9 or a period (.) in
positions 2 through 8.

-159-

When a name is defined by an EQU, the definition (source
statement) must precede the use of the name as a field or a
constant. If the statement

AM2909:DEFAJSR,28X

is given, it must be physically iocated in the source program
after the statement

JSREQUAH#5

A good general rule is to place all EQUs at the beginning ot
the Assembly File program.

ENTRY POINT SYMBOLS

When a label is followed by a double colon () it is cailed an
Entry Point. Entry Points are used when generating Mapping
PROMs to easily obtain the program (location) counter value
associated with certain points in the microcode.

Entry Points are indicated in the assembly source file as
label: : format name A VFS, ...

Except for the double colon, Entry Points are subject to all the
rules applicable to labels.

A list of the Entry Points (symbols and values) may be obtained
when AMDASM is executed by requesting the MAP option (see
Chapter 4, page 20).

STATEMENT TYPES

The Assembly File uses six general types of statements.
These are listed below with their permissible control words:

e Printing control statements (LIST, NOLIST, SPACE,
EJECT, TITLE)

e Program counter control statements (RES, ORG, ALIGN)

@ Constant definition statement (EQU).

e Executable instruction statements (format names from the
Definition Phase, FF).

e Comment Statements (;).

® END Statement

PRINTING CONTROL STATEMENTS

TITLE

All data input on the line with TITLE will be printed at the top
of each page of output. A maximum of 60 characters may be
input for a iitle. When a new TITLEA is encountered the list
device ejects blank lines to complete the present page and
succeeding “pages” will contain this title. A “page” is not
necessarily a physical page since the user may specify the
length (number of lines) of a “page”. The general form is:

Form:

TITLE A alphanumeric data to be printed
at the top of the page

LIST

LIST indicates that the following statements are to be printed
whenever printing of the Assembly File input is requested. This
feature will be most useful when correcting or modifying an As-
sembly File. (AMDASM automatically prints the source state-
rments unless NOLIST is specified by the user.) The general form
is:

Form:

LIST

LIST must:

® Begin on a new line.

e Be followed by a carriage return.

& Precede the Assembly File statements which are to be
printed.

e Be interspersed between complete assembly statements.

NOLIST

NOLIST turns off the printing of assembly source statements.
Printing of the Assembly File input will be suppressed until LISTis
again encountered. Any source statement containing an error will
still be printed. The general form is:

Form:

NOLIST

NOLIST must:

e Begin on a new line.

Be followed by a carriage return.

® Precede the Assembly File statements which are not fo be
listed.

e Be interspersed between complete assembly statements.

(]

SPACE

SPACE indicates that the assembler is to leave n blank lines
before printing the next source statement. The general form is:

Form:

SPACEA n

SPACE must:

e Begin on a new line.

e Be followed by A and a decimal digit indicating the number
of succeeding lines to be left ‘blank.

@ Be inserted in the Assembly File at the point where the
spaces are desired.

EJECT

When EJECT is encountered, the assembler generates blank
lines on a list device so that any previous lines pius the blank
lines equals the specified “page” length (default is 66 lines). It
then begins a new “page”, headed with the title. On a printer
a new page is ejected. The general form is:

Form:

EJECT

EJECT must:
e Begin on a new line.
e Be followed by a carriage retum.

-160-

|
i
i
i
!
|

PROGRAM COUNTER
CONTROL STATEMENTS

2RG

ORG is used to set a new program counter (PC) origin. The
next assembled microword will be located at the new origin.
The general form is:

Form:

ORGA N

ORG must:

e Be followed by at least one blank and n.

e Have n specified using decimal digits unless one of the desig-
nators B#, Q# or H# precedes the digits given.

e Be used only for setting the program counter forward.

e Be greater than or equal to the current value of the program
counter.

ORG may:
e Contain an expression instead of n. ‘
e Be used an unlimited number of times in the Assembly File.

1t no ORG is specified the assembler uses an initial PC of
0.

RES

RES is used to reserve n words of memory. This increments
the program counter by n. The reserved words will auto-
natically be filled with “don't cares” by the assembler. The
general form is:

Form:

RESA n

RES must:

e Be followed by at least one blank and n. .
e Have n specified using decimal digits unless one of the desig-
nators B#, Q# or H# precedes the digits given.

RES may:

e Contain an expression instead of n. A
e Be used an unlimited number of times in the Assembly File.

ALIGN

ALIGN is used to set the program counter to the next value
which is an integral multiple of the value n. It is used to align
the program counter to a specific boundary such that the next
microinstruction will be assembled at an address which is, for
example, the next integral multiple of 2, 4, 8 or 16. The gen-
eral form is:

Form:

ALIGNA n

ALIGN must:

& Be foilowed by at least one blank and n A
® Have n specified using decimal digits uniess one of the desig-
nators B#, Q#, H# precedes the digits given.

ALIGN may:

e (Contain an expression instead of n. e
e Be used an unfimited number of times in the Assembly File.

CONSTANT DEFINITION
STATEMENT

EQU

EQU is used to equate a constant name to a constant value or
expression. The general form is:

Form:

name: EQUA constant (or expression)

This equates the characters given in the name position fo the
value of the constant or expression. Only one expression or
constant is permitted foliowing the EQU.

Each EQU must:

e Begin on a new line.

@ Begin with a name: i
The name: must be followed by EQUA (blanks between :and
EQU are optional). :

e Contain a constant or expression which represents the bit
pattern for one field. .

e Define a value which can be represented in 16 bits (216 =1
maximumy).

Each EQU may:

@ Be followed by a semicolon and comment after the constant:
or expression. SIEEEA

e Be continued on additional lines by using / (slash) as the first
non-blank character in these lines.

e Be used inthe Assembly File even if defined in the Definition
File.

e Be equated to'the current value of the program-counter by :
using $ as the designator. The $ may be part of an expres-
sion.

Examples of EQUs:

ADD:EQUAQ#0
defines a 3-bit field whose bit pattern is 000. .
This could be an ALU function of ADD for the Learning Kit.
PUSH:EQUAH#9 -

defines a 4-bit field, bit pattern 1001 which might represent the
next microinstruction control field in the Learning Kit.

EXECUTABLE STATEMENTS

Executable statements form the body of the Assembly Phase
Program. When assembled (with appropriate substitution of
parameters) they form the binary output code of the Assembly
Phase. They must be input in an order which corresponds to the
desired order of the object code. :

-161-

EXECUTABLE STATEMENTS
USING FORMAT NAMES

Most executable instructions will refer to the format names estab-
lished by the Definition Phass. Their general form is:

Form:

{1abel:}format nameAVFS, VFS
(VFS = Variable Field Substitution)

These formats may be referenced singly (with appropriate
VFSs) or they may be combined (overlayed) with other for-
mats (and their appropriate VFSs). All cases result in the for-
mation of a single, complete microword.

Executable Instruction Statements must:

@ Begin on a new line.

e Contain a format name from the Definition Phase.

e Substitute a constant name, a label, a constant, or an expres-
sion for each variable field and these must be separated by
commas. If a default value was given in the Definition Phase
and is to be used, the VFS may be omifted.

Executable Instruction Statements may:

e Contain a single format name or may contain an unlimited
number of format names to be overlayed.

e Contain the current value of the program counter as the value
for a field if $ is the VFS used for that field. The $ may be part of
an expression ($ + n) given for a VFS.

e Be preceded by a label: or a label::

FREE FORMAT STATEMENT FF

Executable statements whose instruction formats were not de-
fined in the Definition Phase may be defined in the Assembly
Phase by using the built-in free format command FF. The
general form is:

Form:
{1abel: } FFA fieldt, field2, . . ., fieldn

An Assembly File may contain an unlimited number of FFs.
Each FF must:

e Begin on a new line.

e Containa/ (slash) as the first nonblank character if continued
on another line.

& Have fields separated by commas.

e Have an expiicit length “n" given for "don’t care” fields (nX) or
for fields defined using decimal (nD#m).

e Noi contain a variable field.

e Not contain a constant name for a field unless that con-
stant has been previously defined in the Assembly or Def-
inition File.

e Not be overlayed with another format name.

Each FF may:

e Be preceded by a labe! : or iabel

e Contain an expression for any field but the expression
must be enclosed in parenthesis and must be preceded by
the field length “n”, for exdmple:

FFASX,10($-5),B#101

e Contain a value for an expression which is to be autornati-
cally right justified in a field. However, if the number of bits
which represent the value is larger than the field length, an

error is generated unless the truncation follows the) for
this expression :

e Contain a field whose value is the current value of the
program counter by using $ for that field (or an expression
containing $ may be used).

For example, if the constants

WORDA 48
AZ: EQUAB#01
RB: EQUAQ#10

were defined in the Definition File, then the Assembly File could
contain the following statements:

C: EQUA H#C
XTRA: FFA 12H#3%, AZ, 18X, C, B#10111,
/1X, RB
The microinstruction (binary output) for this FF is:
000000000011 01 XOXOOXXXKXXXKXXXXXXXK
12H#3% AZ 18X
1100 10111 X 001000
[[N e
C B#10111 1X RB

which will be printed in the following format:

00000000001101XX XOOOOOOONXXXXXXX 110010111X001000

OVERLAYING FORMATS

When formats are overlayed (combined) to form a microword, the
general form is:

Form:

{iabel:}format nameAVFS, VFS, &format nameAVFS, VFS ..

(VFS = Variable Field Substitution) (& = overlay)

Formats may be overlayed (combined) with other formats pro-
vided that:

e Each bit of format name (#2) that contains a one or zero,
must have that bit specified as a “don't care” in the format
name (#1) to be overlayed. Subsequent overlays must be on
the “don’t care” fields remaining after the averlay of all pre-
ceding formats.

® Each format is a full microword in length.

Microword instructions defined using the built-in free format (FF)
may not be overlayed.
For example, if the Definition File contains:

ADD: DEFA SX, 8H#A2, 3X
REG1: DEFA B#00001, 11X
CARRY: DEFA 15X, B#1

Then in the Assembly Phase

ADRGCY: ADD & REG1 & CARRY
vields

00001 10100010 XXi

-162-

COMMENT STATEMENTS

Comment statements are nonexecutable statements which are
used to provide information about the program variables or the
program flow. A comment may be a full fine or may foliow, for
- example, a constant definiticn statement. All characters from the
semicolon to the end of the input line are not processed and serve
merely as a documnentation aid. The general form is:.

Form:

; comment text desired

END

END indicates that the Assembly File is complete and should be
processed. The general form is:

Form:

END

END must;

e Begin on a new line.
e Be the last statement in the Assembly File.
@ Be followed by a carriage return.

ARGUMENTS

An Argument follows some types of statements as shown in
the executable instruction section.

Permissible Arguments are:

Constanis
Expressions
Constant names
Labels

The statements

LIST
NOLIST
END
EJECT

require no Arguments.

Executable instructions which contain format names from the
Definition File need Arguments only if there were no default
valugs given for variable fields. Arguments which are to be
substituted in variable fields are called Variable Field Substi-
tutes (VFS).

. All other statements fypes require Arguments.

CONSTANTS

Constanis are used as Arguments for the commands EQU,
ALIGN, RES, SPACE, ORG or as variable field substitutes
(VFSs).

Note that in the Assembly File the $ is used to indicate the
substitution of the program counter value for the content of a
constant or field. The following table lists the designators which
may be used to define constants:

Designator Meaning

B# A constant or field whose content will be rep-
resented using binary digits (0 and 1).

Q# A constant or field whose content will be rep-
resented using octal digits (0 through 7).

D# A constant or field whose content will be rep-
resented using decimal digits (0 through 9). A D#
must be preceded by decimal digit(s) giving an
explicit length (number of bits) when representing
a field in an FF statement.

H# A constant or field whose content will be rep-
resented using hexadecimal digits (0 through 8, A
through F).

$ Use the current program counter as the value for

this field or constant.

CONSTANT LENGTHS

Constant lengths were discussed in detail in Chapter |. However,
the length associated with the use of the § is a special case.

When the $ is detected in the evaluation of a constant field or
expression, the current program counter value is substituted
in place of the $.

If the PC = 59 at the instruction preceding:

NEXTLOC: EQUAS+5
then NEXTLOC is equated to 64.
If the $ is substituted for a field, the length of the PC is calcu-
lated by counting the bits from the right to the lefimost sig-
nificant one bit. The PC length most probably will not agree
with the defined (explicit) field length.
Thus, when defining fields in a format in the Definition Phase
or in an FF statement, the fields which are to have $ substi-
tuted in them should include the % and/or the : attributes. For
example, the field definition

4V%:
will permit any PC value to be substituted into it but

4V

will accept only PC values between 0000, and 11115,

CONSTANT MODIFIERS

Constants may have modifiers following their given value.
They must appear after the constant digits where they may be
in any order but will be processed in the following order:

Modifier Description
% Oor — Inversion or negation
% Right justification
: Left truncation
$ Paging

A constant may not be modified by both inversion and nega-
tion.

If a constant, including modifiers, is given as a VFS, any attri-
butes (permanent modifiers) given for that field in the Defini-
tion File will also modify the value of the constant given.
If, for example the Definition File contains:
A: DEFA 5X,3Vs 2X, 5V%H#, B#10101
A

field#1 field#2
and the Assembly File is written:
TEST: AA011,9

-163-

the binary vaiue 011 is inverted and substituted for field # 1, while
the 8 (hex) is equated to binary 1001 and right justified for field#2
resulting in the microinstruction

HAEXXX

If the Assembly File statement is written
TEST2: AAQO1# , 3=

100 XX 01001 10101

the binary value 001 is inverted by the current=, then inverted
again by the attribute in the Definition File for field#1. Field#2
hex 3 (binary 0011) is inverted to 1100 and right justified in
field#2.

The complete microinstruction is:
XXXXX 001 XX 01100 10101

EXPRESSIONS

Expressions may be used when the programmer wishes to
have a value calculated as an argument or as a field substitu-
tion. An expression assumes the form:

Form:

Symbol operator symbol operator . . .

All expressions:

e Are evaluated using integer arithmetic and remainders are
discarded

® Must result in a positive value which can be represented in
16 bits (2'® —1 maximum).

@ Use only the operators, + addition, — subtraction, = multi-
plication, /division, which are described in Chapter I, page 5.

e Are evaluated in strict left to right sequence. There is no
hierarchy for the operators and no parenthesis for nesting are
permiited.

@ May contain the $ as a symbol to indicate that the current
value of the program counter is to be substituted.

& Are terminated by a comma or the end of the line except
when used as a field in FF where they are enclosed by paren-
thesis.

@ May be continued on the next line by making the first
nonblank character a slash (/). A continuation involving a
division would thus require a double slash (//).

@ May contain constants, constant names or labels.

For example, if SBB is a format name, and the first variable
field is to contain the value 3, it might be written as:

SBBA1 + 2
which is the same as SBBA3 (1 and 2 are expression symbols,
+ is an expression operator). The expression

JMPAS ~ 5

yields the current value of the program counter minus 5 as the
VFS for the first variable field in the tormat hame JMP. ($and 5
are expression symbols, — is an expression operator). The ex-
pression :

EIGHT: EQUA 28242

means EIGHT = 8 (2's are the expression symbols, «’s are the
operators).

EXAMPLES OF
CORRECT CONSTANT USAGE

QREG:EQUAQ#0

AQ:EQUAQREG Definition File

DQ:EEQUA4+8/6 (\;;alue =2)
AB:EQUAQREG +1
AM2901:DEFA4V%D#,5X,AQ,3V,17X

EXOR:EQUAQREG+6
BEGIN:AM2901A$+2,EXOR

} Assembly File
AM2901A%—~1,AB

VARIABLE FIELD SUBSTITUTES (VFS)

When a format is defined in the Definition File some of its
fields may be designated as variable fields. If these fields are
not given a default value during their definition or if one
wishes to override the default value, a substitution must be
made for these field(s) in the Assembly File source state-
ments. These substitutes are called Variable Field Substitutes,
VFS.

REQUIRED SUBSTITUTIONS

if the variable field(s) are not given default values in the Definition
File, values for these fields must be provided in the Assembly File
source statements. If omitted, an error message will be provided,
and processing of that statement ends.

SUBSTITUTION SEPARATORS

Each VFS (whether required or optional) represents a single field
and must be separated from other VFSs by a comma. Trailing
commas may be omitied but the assembler uses the commas
to indicate which fields are to be given substitute values (i.e.,
VFSs are positional and position is determined by the number of
commas), so leading or intermediate commas must be given.

For example if the Definition File contains:

A: DEFA 5X, 3V«B#110,2X, 5V%H#, B#10101

field #1 field#2

-164-

Then if the Assembly File is written 22
TEST3: AA4

field#1 will assume the default vaiue 001 (from_ 3\/}'8# 1 1q)
while field# 2 will be equated to 0100 an< right justified in the 5-bit
field so that field#2 is 00100.

The éompleie microinstruction will be
XXXXX 001 XX 00100 10101

if the comma were omitted and
TEST4: AMd

were written, the assembler would try to use 4 as the VFS for
field# 1. Two errors are present. The 4 is not a binary number as
required for field # 1, and no value is indicated for field #2. Field
#2 had no explicit defauit value, and no VF S is.given which isan
error. The indicated error would be “illegal character,” since the 4
is assumed to go with field # 1 which requires binary digits.

It, however, ihe user wishes to.input field#1 as an octal 4 and
fisld#2 as zero, he could write:
TESTS: AAQ#4,0

which yields the microinstruction

XXXXX 011 XX -00000- 10101
octal 4 hex 0
inverted right-

justified

In shcrt, when forming the microword definition, if a leading or
intermediate variable field is to assume a default value but a
trailing field requires a VFS, each field to be skipped must be
represented by a comma.

This is best explained by an example. Assume a format ADE with
three variable fieids, each having a default value of zero specified
in the Definition File:

ADE: DEFA 3VB#000, 3VB#000, 3VB#000

The following example illustrates fields which assume their de-

fault values and fields which are given override or. substitute

values.
. Resultant
Micraword
instruction Definition Meaning
TEST6: ADEA,,010 000000010 Fields 1. and 2 assume
or their default values,
TEST7: ADEA, Q#2 000 000‘ 010 field 3 contains 010.
TEST8:ADEAQ#4,B#101 | 100 000 101 Field 2 assumes its
: ; . default value, field 1
is 100, field 3 is 101.
TESTY9: ADEAO11 011 000 000 |- Fields 2 and 3 assume
their default values,
field 1 is 011.

if the variable field substitutions contain modifiers, using the
Definition File statement:

ADE: DEFA 3VB#000, 3VB#000, 3VB#000

the Assembly File statements for the previous example could
be written: :

Resultant
Microword
Instruction Definition Meaning
TEST10:ADE A, 101% 000 000 010 Fields 1 and 2 assume
their default values
Field 3 is 101 inverted.
TEST11:ADEAH#4: 100 000 000 Field 1 is hex 4 (binary)

0100) truncated to 100.
Fields 2 and:3 assume
their default values.

The variable fields may contain attributes in the Definition File
such as:

ADE: DEFA 3V:H#0,3VeB#000, 3V%B#000
The Assembly File Statements written below now generate:

Resultant
Microword .
Definition

Instruction Meahlng

Field 1 assumes its
default: value 000:
Field 2 assumes its
default value 111.
{000 inverted). Field
3 is inverted to 10
then right justified
to be 010.

Field 1 is hex 8
truncated to Q01. Field
2 is octal 3.inverted to
100, then inverted by
field# 2 atiribute (=) ta
011. Field-3 is binary 1
right justified to 001.

TEST12:ADEA,,01= 000 111010

TEST13:ADEAS, Q#33,1 001 011 001

EITTING VARIABLE SUBSTITUTES
TO VARIABLE FIELDS

Any value given as a Variable Field Substitute (VFS) must con-
tain exactly the number of bits specified (in the Definition File) for
the total length of the variable field unless the modifiers % (right
justification), : (truncaﬁon), or $ (paged addressing) are given.

These modifiers may be supplied as attributes with the original
field- definition (Definition File) or they may be supplied with the
field substitution value in the Assembly File.

PAGED AND RELATIVE ADDRESSING

$ is used in two ways in the Assembly’ File:

a) To indicate that the current value of the program counter is the
value to be substituted into this field. This is called relative
addressing.

b) As an attribute to indicate that the value substituted for this
field must be on the same memory “page” as the microword
into which it is substituted. This is called paged addressing.

For relative addressing, the $ alone or as pari of an expression is

used as a VFS. :

For paged addressing, the $ may be given as an attribute of this

variable field in the Definition File, orthe $ may immediately foliow

the VFS in the Assembly File source statement.

-1665-

For example, if the Definition File contains
JSR:DEFABX,8VS, H# 27, 12VH#
JSB:DEFABVZD#, 8%, 8Q#013:, 12X

the Assembly File could be written
Line#

JSR A BEGIN,0BC
JsB A MULTS+5

JSR A MULT, BEGINS
JsB A H#37

JSB A $+5

bW =

BEGIN: ADD

MULT: MPY

Lines 1-3 are examples of $ used for paged addressing. In
Line 1, the value of the program counter (where BEGIN: ap-
pears) is substituted info the first variable field of the format
JSR. This value is truncated on the left, if necessary, o fit in-
to this 8-bit field, and any truncated left bits must be identical to
the corresponding bits of the program counter associated with
Line 1.

The same type of substitution, truncation, etc. occurs forLines 2
and 3.

Note that:

e TheJSBon line 2 needs a $ after MULT if paged addressing
is desired since no $ was given with that variable field in the
Definition File.

e For expressions such as line 2, the constant (5) is added
to the vaiue of the label (MULT) before the check is made
10 ensure that the value substituted is still on the correct
“nage”.

e The JSR on line 1 needs no $ with the BEGIN since that
variable field contained a $ in the Definition File.

& The JSR on line 3 requires a § after BEGIN since the second
variable field did not contain a § in the Definition File.

s On line 2 a label with a $ may be part of an expression.

Line 5 is an example of relative addressing. The current value of
the program counter plus 5 will be substituted for the variable
field.

Note that:

e There is no connection between the $ used for paged ad-

“ dressing — as an atiribute for a variable field — and the $
used as a variable field substitute to indicate use of the
current value of the program counter (relative addressing).

HEXADECIMAL ATTRIBUTE

The designator H#, if given with a variable field in the Definition
File, is a permanent attribute but may need to be repeated in the
Assembly File. This is necessary since the program cannot dis-
tinguish a hexadecimal value which begins with an A through F
from a label or format name.

Thus, if the Definition File contains
AM2901:DEFABVZH#,Q#0,21X

and the Assembly File statement contains
AM2901A3A

it is clear to the program that the digits 3A are to be substi-
tuted into the variabie field. (A label or name cannot begin
with a numeral).

However, the statement:
AM2901AAB

does not clearly indicate whether the constant name AB is meant,
or the value of the hexadecimal digits AB is meant. If the pro-
grammer wishes the hex vaiue AB, he must write:

AM2901AH#AB

The statement AM2901AAB will substitute the value of the
constant named AB in the first variable field. if there is no
constant named AB, an error will be generated.

ASSEMBLER SYMBOL TABLE

The symbol table contains a list of all the symbols (constant
names) defined by EQUs and ail labels in the Assembly File.
The symbol table also inciudes ail the constant names and
their associated values defined using EQUs in the Definition
File.

For each symbol, the table lists the label and the program
counter value of the statement where the label is defined, or if the
symbol is a constant name (defined by EQU), it is followed by the
value of the constant.

A symbol table is useful when errors occur due to misspelling or
the omission of the colon after a label.

A sample symbol table is:

SYMBOLS
A 0001
S 0023
X 0000

Printing of the Symbol Table is optional and is described in the
SYMBOL and NOSYMBOL section of Table 4-1.

ASSEMBLER ENTRY POINT TABLE

The entry point table contains a list of all the entry point symbois
(labels followed by ::} and their associated program counters.
These values are useful for mapping PROMSs.

Printing of the eniry point table is optional and is described in the
MAP and NOMAP section of Table 4-1.

ASSEMBLY FILE — RESERVED WORDS

The following are reserved words used by the assembler pro-
gram during the Assembly Phase. These words MAY NOT BE
USED AS LABELS in the Assembly File statements:

ALIGN NOLIST
EJECT ORG
END RES

FF SPACE
LIST TITLE

Format names or constant names from the Definition File.

-166-

CHAPTER IV
AMDASM 29 OUTPUT, FILENABES, EXECUTION
ASSEMBLER OUTPUT

Assembly Phase output includes a choice of one of four types of
printed listings.

Type | Description

| interleaved format (INTER). One fine of source code is
printed with the corresponding line of object code printed
directly below it.

i Source only format (SRCONLY). Only the Assembly File
source statements are printed.

i Object code only format (OBJONLY). Only the Assembly
Phase object code is printed.

v Block format (BLOCK). Al lines of. source code are
printed followed by all lines of the object code.

Each of these listings contains the locatior? (program) counter
associated with each fine of source and object code.

Afinal option is to output the binary object code directly 1o disc for
use as input to the post processing phase. (Dtsc output is ‘"@e'
pendent of the listing option chosen.) The object code on the disc
may then be used, for example, as input 10 the post processing
phase which might punch a paper tape in a format suitable for
burning PROMs.

FILENAMES

Filenames are used to identify unique files ona diskette. They
are in two parts, a primary part and 2 generic part. The gen-
era! form is:

PPPPPPPP-Gag . '
where the p's represent from one t0 eight characters in ihg
primary part and the g's represent from one to three characters in
the generic part.

All alphanumerics and special characters except

<> . . . = 7= orablank

may be used for p or g. .
In the following section p refers 10 primary ﬁ.lenames for the
Definition File: g refers to primary filenames in the Assembly
File. Normally the user will use the same primary name for
PHASE1 and PHASE2. Thus, pppppppp will equal qqqqqqqq.
The user may define his own names for p's or ~q’s which are
meaningful for this particular application. However, he must
use the generics listed below in soma cases. Thg MANDAT__
ORY generics are undertined. Generics r:\ot underhped are de-
faults and will be assigned or assumed if not specified by the
user.
pppppppp.DEF Sourceinputforihe Definition File (PHASE1)
pppppppR.TBL Output from PHASE1} usually p = q
qgqqgqaq.TBL Input for PHASEZ)
49999990.SRC Source input for Assembly File (PHASE2)
pppppppp.P1L PHASET listing output
qqqqqaqqa.P2L PHASER listing output
qgqoaagqq.0BJ PHASE2 output (object c_ode)
9999qq9a.MAP PHASEZ output emry point symbols
and their values
When creating the input files pppppepp.DEF and agagaqas.-SRC
the DEF and SRC generics must be typed as a part of the
filename when invoking the Editor.

EXECUTION

NOTE: In examples of execution commands, data to be input
by the user is underlined. Other data is output by the system.

After the user has created his Definition File and Assembly File
using the AMDOS 29 Editor, he is ready to execute AMDASM 29.
After the AMDOS 29 operating system has issued a user prompt
(i.e., the characters A>) the microassembler is executed by
entering the command:

A > AMDASMAPHASER=primaryfilename{Aoptions} cr

where

PHASE 1 =primary filename
or
PHASE1Aprimary filename

specifies execution of the Definition Phase using primary
filename for the definition source file.

PHASE2=primary filename

or

PHASE2Aprimary filename

specifies execution of the Assembly Phase using primary
filename as the assembly source file.

PHASE 1 =primary filenameAPHASE2=primary filename

specifies execution of both the Definition and Assembly
Phases.

Thus,
A > AMDASMAPHASE1ABKIT cor

specifies execution of only the Definition Phase using the file
(on drive B) called KIT.DEF.

or
A>AMDASMAPHASE1=BKITAPHASE2=B.KIT _cr

specifies execution of the Definition and Assembly Phases
using the files (on drive B) KIT.DEF as the definition source
file and KIT.SRC as the assembly source file.

Either PHASE1 or PHASEZ2 or both must be specified follow-
ing AMDASMA. P1 and P2 are the alternate abbreviated
keywords used for PHASE1 and PHASEZ2, respectively.

The generic part of the filename must not be typed, and
either a A or an = may be used before the primary filename
as a delimiter. For example, the following are permissible execu-
tion commands for PHASE1:

AMDASMAP1 =pppppppp This assumes pppppppp.DEF
AMDASMAPHASE1=pppppppp { was the name assigned
AMDASMAP1Apppppppp when the Definition
AMDASMAPHASE1Apppppppp j File was created.

Following AMDASMAP1Aprimary filenameAP2Aprimary
filename the user then enters the desired options. Options may
be given in any order. They are listed in Table 4-1. The full option
may be typed {OBJECT) or the abbreviated option miay be typed
(O).

if an option is not typed, AMDASM uses the default option givenin
Table 4-1.

-167-

Table 4-1

AMDASM 28 Options

OPTION

ABBREVIATED
OPTION

DEFAULT

PMEANING

DEFTBLAfilename
or
DEFTBL=filename

D

ppPPPRPP. TBL
or

qqqaqqaq-TBL

Specifies the hame of the file where output
of the Definition Phase is to ba stored.
When only PHASEZ is executed, this
specifies the input file which

contains the processed definitions. it

no DEFTBLAfilename is given the default
name pppppppp. TBL will be used if
PHASET1 is executed; gaqqaqqq.TBL is the
detault when only PHASE? is executed.

LiSTiAfilename
or
LIST1=filename

Li

ppPPPPPp-P1IL

Specifies where the Definition output
is to go. When LST: is given as the
filename, the output will be listed on
the fine printer. If no list1Afilename
is given, the output goes to the file
with the default name pppppppp.P1L.

LiST2Afilename
or
LiST2=filename

qgaqqaqq-P2L

Same as LIST1 except this specifies
where the PHASE2 (Assembly) output
is to go. The default name is the
generic P2L appended to the Assembly
File source input name (qgggqqaq.P2L).

NOLIST

NL

pPPEPRPR.PIL
and/or

qqqgqaaaq.P2L

Suppresses fisting of PHASE1 and/or
PHASEZ2 output. # not specified defaults
to LIST1 and LIST2. Output goes fo files
pppppppp.P1L and qaqqqqqq.PaL.

OBJECTAfilename
or
OBJECT =filename

NOOBJECT

NO

9qgqqqqq.0BJ

Specifies that the microcode (object code)
is to be output on a file with the

name (filename). If not given, the micro-
code is placed on a file with the

default name qaqqqqag.0BJ.

Suppresses placement. of the microcode
onto a fite. if block format printing

is requested, the object code printing

is also suppressed. If not specified
detaults 10 OBJECT ‘and the microcode
goes to file qgqaqaqe.OBJ.

INTER

BLOCK

BL

SRCONLY

SO

OBJONLY

(0}:]

BLOCK

Specifies interleaved listing format
(a line of source code followed by a
line of object code.)

Specifies blocked listing format (all
lines of source code, then all lines
of object code).

Specifies source-only listing format
(prints only the source code.)

Specifies object-only listing format
(prints only the object code.)

WIDTHAN
or
WIDTH=n

n=80

Specifies width n, (a decimal number)
of characters for listing device.
Detault is 80.

LINESAR
or
LINES=n

LN

n=68

Specifies widih n, (a decimal number)
of lines per page. if not specified,
dsfault is 66 lines (11 inches).

MAPAfilsname
or
MAP =filename

NOMAP

NM

4qqaqgaq.-MAP

Specifies listing of entry point symbois
(i.e., labet symbols designated as entry
points by double colons “::") and

their associated program counter values
is to be output on the list device

or onio a list file.

Suppresses listing of entry point symbols.
not specified, defaulls to MAP and
results are stored on a file with the default

name qgqqqqaqq.MAP.

HEX

OCTAL

HEX

Specifies listing of location counter
in hexadecimal format.

Specifies listing of location counter
in octal format. if not specified
defauits to HEX.

SYMBOL

NOSYMBOL

NS

SYMBOL

Specifies listing of constant names
and labsls and their associated values.

Suppresses listing of Symbol table.
if not specified, defaulis o
SYMBOL.

-168-

DISK DRIVE DESIGNATORS

Since the AMDASM program is always loaded from the cur-
rent drive, the user must precede his filenames with a drive
designator if his input or output files are not on the current
drive.

Thus the general form of all filenames will be

device: primary.generic
where device: is indicated by a A: or B.. A indicates drive A; B
indicates drive B.
Examples assume all files are on the current drive. However,
when a drive is designated with an input filename, all output

default files will be placed on the same drive as the input file for
the associated PHASE.

When the user specifies a filename but no drive designator, the
file(s) will be placed on the current drive.

EXAMPLES OF AMDASM EXECUTION

Options need o be separated by at least one blank character
from other options in the execution command.

Whenever a user does not specify an option in his execution
command AMDASM will use the default values given in the
Table 4-1.

The command language for executing AMDASM is best il-
lustrated with examples (current drive is assumed to be drive
A) :

A > AMDASMAP1=2900AP2=2800 cr

specifies execution of both PHASE1 and PHASE2 using
2900.DEF as the input file for PHASE1 and 2900.SRC for
PHASE2. Defaults are selected for all other options.

A > AMDASMAP1=2900AD=2900R1 cr

specifies execution of PHASE1 with 2900.DEF as the input
source file and 2900R1.TBL as the definition table output file.

A > AMDASMAP2=SYSTEM1AD=2900R1AILANS cr

specifies execution of PHASE2 with SYSTEM1. SRC as the input
source file and 2900R1.TBL as the definition table input file,
interleaved listing format, no symbol table listing, and a list of
entry point symbols (by default).

The primary default name for the DEFTBL option may assume
the PHASE1 (pppppppp) filename or the PHASE2 (qgqqqqaqq)
filename as illustrated in Table 4-1. Thus, if the execution com-
mand is:

A > AMDASMAP1AAM2300 cr

this assumes the input filename is AM29200.DEF and the program
will assign the name AM2900.TBL to the definition table output
and AM2300.P1L to the output list file.

Now if the user attempts o execute
A > AMDASMAP2ASYSTEM1 cr

the program will indicate an error since it will be looking for
SYSTEM1.TBL as the filename for the DEFTBL input.

The user may, prior o executing the above command, rename
his AM2900. TBL file to be SYSTEM1.TBL. Alternatively, he may
execute the command

A > AMDASMAP2ASYSTEM1ADAAM2900 cr
indicating the name AM2900.TBL is the DEFTBL input filename.

In either case, PHASE?2 will output files with the default names
(including generics):

SYSTEM1.0BJ object code generated
SYSTEM1.P2L PHASER listing

SYSTEM1.MAP Mapping PROM file {eniry point symbols and
their values)

The user may assign only a primary filename to the DEFTBL
option.

All other options may be given a primary or a primary and
generic filename if the default option is not used.

SUBMIT FILES

If the user wishes to have AMDOS 29 automatically execute his
AMDASM command, he may create a SUBMIT File as follows:

A > EDAname.SUB _cr

NEW FILE

#1 cr
AMDASMAP1=§1AP2=8§2 cr
Control Z

® cr

SUBMIT files assume the “name.SUB" file is on the current drive,
thus it must be created on the diskette which contains AMDASM
and this diskette must be mounted on the current drive.
For execution of the above SUBMIT file, the user need merely
type:

A > SUBMITAnameAppppppppAgqqqqqqq

AMDOS 29 automatically substitutes pppppppp for $1, qagaqqqq
for $2.)

SUBMIT files are similar to baich jobs since more than one
execution command may be part of the SUBMIT file. Thus,
the user may create a SUBMIT file for one or multiple jobs
and need not remain at the console.

This is most convenient when the user has a long execution
command and/or when he wishes to execute several consecu-
tive assemblies without staying at the console and/or when he
wishes to execute the same type of command using many dif-
ferent files. For more detailed information about SUBMIT files,
please refer to the System 29 Manuals.

-169-

RAM & MUX 4 6 5 a 3 2 1 o
SELECT
RAM
7 s ue us
LOCATION v Y R us u3 vz
i iz
&iT ;
5 | 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 7 13 5 a 3 2 1 0
NUMBER 31)30 20|28 27} 25| 2
BiT o Muxyl 1g] 17 | 1g IMUXQl 12 L i tg] Calts] 1al Al aslayl aplesls, e
BRI 8R4 | BR,|BARG| P3| Pa | Pe] ¥0 W '8y 78 0210n54332\032|50000
GEFINITION 31 BR2 1 BH11BR0) F3 | T2 0| D3t D2 | Dy} Do
NEXT
FIELD BRANCH yinsTRUCTION MUy DErNATION laauxg) propipsd TN ALY “8” o
DEFINITION ADDRESS CONTROL
LOAD A s ¥
cooe FUNCTION F>a A a 0 R+S
NOTHING A < 1 S-R
0 |BAANCH REGISTERIFF %0 -
8 o a 2 A-s
v |BRancH rRecisTER
2 |conTInuE F>e ° 8 3 RVS
3 |BRANCH MAP 1D SWITCHES) Fr2-#8 0230 o A a4 RAS
& |JUMP.TO-SUBROUTINE IF F # 0 F1258 ° N . Y
5 |JUMP-TOSUBROUTINE s 7090 P P = Py
6 |RETURN-FROMSUBROUTINE
2658 o o 7 AVS
7 |FiLE REFERENCE
8 |END LOOP AND POPIFF = 0
9 |push 1AND CONTINUE
10 |POP LAND CONTINUE) TYPE DOWN® upee
11 |END LOOP AND POPIF Cqe g o o 26RO o0->RAM, o>y 0->RAMg o>00
12 |BRANCH REGISTER IF F = 0 - ; — PPy PYvP——
13 |BRaNCH REGISTER I Fy 3 s 3 0 93%%%
14 |BRANCH REGISTER IF OVR v e ROTATE DOUBLE RAMg->0y Qp->RAMy | RAM3=>0g O3->RAMg
6 |BRANCH REGISTERIFChpag 1] ARITHME TIC DOUBLE F3 (Sign)>RAM3 RAMg»Q3 | Q3->RAMY 050,

Figure 5-2. Example of Fields and Functions

-171-

TITLE AM2800 KIT DEFIMITIONS

WORD 32
‘REGISTER DEFINITIONS

: EQUHED T
R1: EQU H#t
EQU He2
EQU H#3
EQU Hod
EQU H#5
EQU H#6
EQU Hw?

. EQU H#8
: EQU H#3
: E0U HeA
- EQU HaB

EQU HeC
; EQU H#D
. EQU HeE
R15: EQU HaF

‘AM2901 SOURCE OPERANDS (R S)
A EQUOs0 T
AB: EQU 0#1
70' EQU Q#2
78: €OU 0#3

IA: EQU 04
DA: EQU 0#5
DQ: EQU Q#6
DZ: EQU Ow7

E&MZQOI ALU FUNCTIONS {R FUNCTION S)

ADD; EQU 020
SUBR: EQU 0#1
SuBs: EQuU 0#2
OR: EQU O#3

AND: EQU Qw4
NOTRS:EQU Q&5
EXOR: EQU 0#6
EXNOR:EQU Q&7

‘AM2901 DESTINATION CONTROL

QREG: EQU Q#0
NOP EQU 0wt
RAMA: EQU Q#2
AAMF. EOU Q@3
RAMOD: EQU O#4
RAMD: EQU Q#§
RAMOU: EQU Q#6
RAMU: EOU Q7

"SHIFT MATRIX CONTROL

SHIFT: DEF 8X,B#0,3X,B#0,19X
ROTATE: DEF BX.8#0.3X B#1.19X

.

DBLAOT: DEF 8X,B#1,3X,840,19X
ARITH: DEF 8X,B#1,3X.B#1,19X

3

HEXT MICROINSTRUCTION ADDRESS SELECT

BRFNO: EQU He0
BR: EQU H#1 :BRANCH REGISTER
CONT £0U H#2 ;CONTINUE
BM EQU Hg3 [BRANCH MAP
JSRFNO EQU K4
JSR: EQU H#5 JUMP-TO-SUBROUTINE
RTS: EQU H#b ;RETURN FROM SUBROUTINE
STKREF: EQU He'T FILE REFERENCE
LOOPFND: EQU H#8 ;END LOOP AND POP IF F=0
PUSH: EQU H#9 ;PUSH AND CORTINUE
POP: EQU H#A ;POP AND CONTINUE
LOOPCOUT: EQU H#B [END LOOP AND POP IF CN+4
BRFEQQ: £QU H#C ;BRANCH REGISTER IF F=0
BRF3: EQU H#D ;BRANCH REGISTER IF F3
BROVF: EQU H#E :BRANCH REGISTER IF OVR
BRCOUT: EQU H#F BRANCH REGISTER IF CN+4
(OTHER STUFF
CNO: EQU B£0
CNU: QU Be#1
LOW: EQU BeO
HIGH: EQU Ba1
ZERO: EQU B&D

EQU 821

DRE:
AM2901: DEF 9X,3V0#1,1X,3VX, 1VX, 3VX,8VX VK 4X
AM2809: DEF 4VX,4vH#2 24X

DiN: DEF 20K.4VH#

Enp

BRANCH REGISTER IF F NOT EQUAL TO ZERD

-JUMP-TO-SUBROUTINE IF F NOT EQUAL YO ZERQ

“RO" to *‘R15" -are set to hex 0 io F

using the *‘squate” statement. The “H#"
designator means the numbers following
are in hex, and each digit represents 4 bits.

ALU Source operands are assigned
octal values using the “‘equate”. The
“Q#" designates octal, 3 bits, per digit.

The 8 ALU functions of the AM2901 are
given names.

Defines the two separated bits which
control the left-right shift muitiplexers.
The “'x's” are ‘‘don’t-care” bits in
between the defined bits.

Definitions for the sequence conirol
instructions used in the second field
of the microinstruction.

Format definitions are made for the ALU
fields, the sequence control fields, and the
data input. Formats contain don't cares (x)
and variables (v). Each variable can have a
default value. For example, in AM2909, the
second four-bit variable defaults to hex 2,
and the first four-bit variable defaults to x.

Figure 5-3. Definition File
-172-

jewiod yooyg urnding Ajquiassy G-G ainbig ajduwiex 3 jo ey Mojd “p-g ainbiy

Z-6TNSVANY

XXXXTT@@XXXXTTBX TTGXTOeXTeeaTTTT 000
XXXXTTBBXXXX@00T TTOXTTOXETTEXXXX 3008
XXXXXXXXXXXXXXXX XXXXT@OXTO0QTTITT 1008
XXXXXXXXXXXXXXXX XXXXTO@X@00a1016 2000
XXXXGOTOXXXXTO0@ TIOXTTOXATOOXXXX 9000
XXXXOTABXXXXTTOX TTOXTOTXO0TEOTIT Yoo
TO%0PTE0CTAEPATX TATXTABXCTOEXXXX 6000
XXXXTGOOXXXXTTOX TIEXTATXBOTO0TIT 2000
TOPOTO00TORAGATX TETXTEOXETCOXXXX 00D
XXXX0@0@XXXXTIEX TT@XTOTXOTeaTIT 9000
T60000eCA0E00ATX TATXTOBXGTAEXXXX S200
XXXXTTBOXXXX@ATX TTOXTTOXETOBXXXX hooo
BOTEBETOXXXXTTOX TTIXTTBXBTBEXXXX £000
GOBEETEEXXXXTIOX TTIXTTOXBTOAXXXX 2000
TOBTTOEBXXXXTTEX TTIXTTOXBTAaXXXX 1000
TTTTE@0@XXXXTTEX TTTXTTOXETBEXXXX 2000

—

Pyo3a fut

2% ~%y oL

1000=0'a°%4 | &

zitu~ty |8

SY7Y0° 92" TE6ZWY 3 A'STY 6@6ZY STV 4600

€Y7 OOV TNIGZ “dWv¥ TO6ZWY 3 SI¥“ 6064V ‘hTYV 3000
. TE6TWY 3 Y8 STY 6862WY (10ee
TO6ZWY B GNJHE"SY 60621Y 6@

Y HENSTOND 87 “dWWY TE6ZWY B 6@6TWY]
247740747 "WYY TOGZWY B GNJYSC HTYV 606TWY v6ea
TNIQ® 24"24°QNY“"YQ" T@6ZWY B 6B6TWY 6006
TH Y097 "QWvY TOBZWY 3 BNJYSP hTY 6B6ZWY 80ea
T NIO 3 TH'TYONV YOQ" TO6TWY 3 6@6ZkY L0B6d

@d" 407797 ‘GIv¥ TO6ZWY B @NSH 4TIV 6@6ZWY 90a0
T NIQ 3 QY Q4 QNY°'¥Q° TO6ZWY B 606ZWY :SY SO08
CY4FUANYEZ WYY TO6ZWY B 6@6ZWY hea

b NIQ 3 pY°740°7Z0 “dWWY - TO6ZWY B 6@6ZUY £008

@ NIO 3 2440720 “dWvd TO6ZWY 3 6E6ZWY c0e

0=fy yvata

¥
y="y avol €
IR Zr=fu avol |2
% ta=ty avor |1

O=% avol |o

_
_
_
|
_
_
_
_
_
|
*
aN3 |
&
|
_
|
,
“
|
_
|
_

6 NIT 2 TH 0" 770 “4WWY TBOZWY B 6@6ZWY Toee Fu]
d#H NIQ 3 @4°7407"Z0 "dWWY T@6ZWY B 6B6ZWY 2606 e e e e e

-173-

CHAPTER VI

AMMAP 29 MAPPING RAM/PROM DATA
ASSEMBLER

AMMAP DESCRIPTION

AMMAP enables System 29 to generate non-microinstruction
PROM data. Specifically, AMMAP generates non-microinstruc-
tion PROM data for the Mapping RAM in the Computer Control
Unit (CCU) card of System 29.

AMDASM 29 outpuis a symbol table file of microprogram entry
point symbols as an option with the generic file name 'MAP".
The AMMAP assembler uses this file, in conjunction with an
assembly source file provided by the user, as a symboi table to
generate an object file. The object file, which uses the generic
file name OBM, is compatible with the AMDASM 29 object file
format. Therefore, it can be loaded/verified by the LBPM/VBPM
programs.

AMMAP is a one-pass assembler that allows the user to
specily the width of the mapping PROM, the assembler’s loca-
tion counter value, and the microprogram entry point addresses
to be assembled intc any PROM Iocation.

MAJOR FUNCTIONS OF AMMAP

The principal function of the AMMAP assembler is to generate
Mapping PROM data through a symbolic source program.
Vhen AMMAP is called for execution, the user must specify
the ‘MAP’ file 1o be used for symbol table input. AMMAP builds
a symbol table from this file and begins assembly of PROM
data.

The individual functions of AMMAP are:

e Entry Point Symbol Table Management — AMMAP will
manage and ufilize the entry point symbol table built from
the user specified ‘MAP file.

e Location Counter Control — AMMAP staris assembly at
PROM location 0 unless specified otherwise via user direc-
tives that set the location counter value. In addition, it keeps
track of locations and assigns locations for each entry point
address assembled.

e Data Assembly — Translates symbolic eniry point ad-
dresses into internal binary equivalents and assembles
them into PROM location.

e Assembly Directive Processing — Processes all assembly di-
rectives: PROM width specification, number base specifica-
tion for setting location counter, assembly listing, and object
output control, and END directive.

® Assembler Output Generation — Generates an assembly
listing, object data output file, and error diagnostics.

e User Command Language Interface — Processes usef-
specified assembler execution parameters and other user
interfaces.

AMMAP PERFORMANCE
CHARACTERISTICS

AMMAP runs under the 32K memory configuration for System
29. it allows at least 8K for entry point symbol table space and
can handle more than 600 entry point symbols.

USER INTERFACE

PROGRAM AND SOURCE STATEMENT
CONCEPTS -

The general format of an assembly statement in AMMAP is:

location: entry0, entry1,, entryn

where:
jocation is a binary, octal, decimal, or hex constant. The
number base is selectable via the BASE directive
and default base is hexadecimal.

is an entry point symbol that is defined during
AMDASM assembly phase and entered into the
symbol table written out as the 'MAP’ file. it may
also be an absolute address in which case it must
be a constant which follows AMDASM syntax
rules.

entryn

NOTE:
location and colon following it are optional. If not present,
AMMAP assigns the next available location. Assembly
origin is 0, uniess specified otherwise.

Comment Statements

A cornment may be introduced into any source line by pre-
ceding the comment with a semi-colon (;). AMMAP will treat all
source text on a line afier a semi-colon as a comment up to the
carriage return.

ASSEMBLER DIRECTIVES

PROM Width Directive (WIDTH)
The general format of WIDTH directive is:
WIDTH n

where: n is a decimal constant (which specified the width of
Mapping PROM or RAM 1.n_128)

The WIDTH directive must precede any assembly statement
because it specifies the width of Mapping PROM or RAM.

Title Directive (TITLE)
The general format of TITLE directive is:
TITLE text
where: textis a title string of up to 60 characters.

The title will appear in the page header of assembly listings
and the title record for object file.

Location Counter Base Directive (BASE)
The general format of the BASE directive is:
BASE Type

where: type may be one of the following: 2, 8, 10, or 16 to
designate that binary octal, decimal, or hex numbers
will be used for specifying PROM location.

If a number base is not specified in the program, the default
used is 16 (hexadecimal).

-174-

End of Program Directive (END)
The general format of END directive is:
END

The END directive must be used to terminate the AMMAP as-
sembly source input file.

NOTE:
Use of TAB characters aiso allowed as in AMDASM.

COMMAND LANGUAGE o

The AMMAP assembler may be executed with the followmg

AMDOS 29 transient command: :

AMMAP filename1 MAP = filename2 options = cr

where: e
filename1 is the primary filename of the AMMAP source

mput file which must have the genenc flle name‘
*.OPC'. o

filename2 is the primary file name of the ".MAP’ ouiput file
from AMDASM to be used as the entry point

symbol table.
options are user selectable options described. in Tabie
6—1.
TABLE 6-1 AMMAP 29 OPTIONS.
ABREVIATED
OPTION OPTION DEFAULT MEANING
LISTAfilename L Specifies the listing is to be output to a file with the
or name (filename). If not given the listing is placed on.
LIST =filename a file with the default name pppppp.P4L.
NOLIST NL pppppp-P4L Suppresses the creation of a listing. If not specified
defaults to L=pppppp.P4L.
OBJECT Afilename 0 Specifies that the microcode (object code) is to be
or output on a file with the name (filename). If not given,
OBJECT=filename the microcode is placed on a file with the default
name qqqqqqqq.OBM.
NOOBJECT NO q9qqqqqq.OBM Suppresses placement of the microcode onto a file.
If block format printing is requested, the object code
printing is also suppressed. If not specified defaults’
to OBJECT and the microcode goes to file
4q99qg9qq.0BJ. :
WIDTHAN w n=80 Specifies width of n (a decimal number) characters for
or listing devices. Default is 80. :
WIDTH=n
LINESAR LN n=866 Specifies length of n, (a decimal number) lines per
or page. If not specified, default is 66 lines (11 inches).
LINES=n :
HEX H Specifies listing of location counter in hexadecimal
format.
OCTAL (o] HEX Specifies listing of location counter in octal format. If
not specified defaults to HEX.
L S Specifies listing of constant names and lables and
SYMBO SYMBOL their associated values.
BOL NS Suppresses listing of Symbol table. If not specified,
NOSYM defaults to SYMBOL.
TABLE 6-2 AMMAP ERROR MESSAGES.
ERROR MEANING
ERRCR 1 legai Character
ERROR 2 Undefined Symbol
ERROR 3 lilegal Location Counter Value
ERROR 4 Missing Colon After Location
Counter Value
ERROR 5 Missing Delimiter After PROM
Data Specification
ERROCR 6 Missing End Statement
FATAL ERRORS:
ERROR 100 Command Option Syntax Error
ERROR 101 llegal Mapping PROM Width

Specification

-175-

CHAPTER ViI \

AMSCRM 29 BIT SCRAMBLING POST
PROCESSOR

AMSCRM 29 DESCRIPTION

it is sometimes convenient for the microprogrammer {0 assign
microword fields such that they initially occupy positions that
differ from those in the actual hardware implementation. This
is often the case when the programmer, for convenience, al-
locates bits according to the functions io be performed and
then needs to translate the object code produced by AM-
DASM io be consistent with the hardware microprogram mermory
design.

There is another instance where the ability to shift bit assign-
ments is important to the engineer. As a given product evolves,
bits may be added or deleted from the original microword format.
At the time that PROMs need to be blown, bits often need to be
reassigned to be consistent with the hardware implementation.

At the conclusion of an AMDASM assembly, the user can di-
rect AMSCAM 1o reassign the bit positions of the microword
contents by simply specifying the source and destination bit
positions and the length of each field to be moved. In so do-
ing, a reorganized microcode object file is produced.

The leftimost bit in the object code is assumed to be position
0; thus the rightmost bit position will be (microword size-1).
This is the reverse of the numbering used in Figure 5-2.
AMSCRM is executed after AMDASM but before AMPROM.
The object code generaied by AMDASM is the input to
AMSCRM.

After execution begins, the transformation parameters are en-
tered. These indicate the source bits to be moved, their desti-
nations and the length of the field to be moved.

After execution of AMSCRM the microcode is in iis new bit
order and is available on a file to be used as input 1o AM-
PROM.

EXECUTION AND FILENAMES FOR AMSCRM 29

After the AMDOS 29 operating systern has issued a user
prompt (i.e., the characters A >), AMSCRM is executed by enter-
ing a command of the form:

A > AMSCRMAOLD=filenameiANEW=filename2 cr

or
A > AMSCRMAOLDAfilename1ANEWAfilename2 cr

Filsname1 is the name given to the file containing the microcode
generated by AMDASM. Filename1 will be the assigned name
gqaaqaqa.0BJ it AMDASM was executed without specifying
OBJECT =filename.

Filename?2 is a user-defined name for the file on which the
reordered microcode is to be placed. it is recommended that
the user make the primary pari of Filename2 the same as
Filename1, but that he use a different generic. Filename2
must be different from Filename1. There are no required
generics for AMSCRM, but if Filename1 does not specify a
generic, the generic defauits to .OBJ. Likewise, the default
generic for Filename2 is .XOB.

After the execution command and a carriage return is entered,
AMSCRM issues a prompt:)

ENTER TRANSFORMATION PARAMETERS:
S0, DO, WO, cr
S1, D1, W1, cr
Sn, Dn, Wn, cr

- Cr

The user enters the underlined data where:

S0 = starting (leftmost) bit position for the first source field to

be moved

destination bit position for the first (leftmost) bit of the
first group of bits.

WO = width of the field to be moved.

S1 = starting (leftmost) bit position for second source field to
) be moved.

Do

1t

-]
@
@

Wn = width of the last field to be moved.
Each group of parameters is ended by a carriage return.
A period and a carriage return are used to terminate input.

For all microwords the leftmost bit position of the AMDASM
printout is considered to be zero; thus the rightmost bit posi-
tion will be the width of the microword -1.

lt is the user's responsibility to see that all bits are properly
shifted. Thus, if the user enters:

14,284 cr

(indicating that 4 bits beginning at bit position 14 are to be
moved to bit positions 28, 29, 30, 31), he also must enter

28 X,4 cr

where X indicates the new starting bit position for the bits origi-
nally in positions 28-31.

AMSCRM 29 EXAMPLE

As an illustration, the MUX control bits in the Evaluation Kit
are physically separated in the hardware configuration. How-
ever, it would be much more convenient to program them as
contiguous bits when writing the microcode.

The bit numbers shown in Figure 5-2 are numbered right ic
left; AMDASM and AMSCRM count bit positions from left
right.

Thus, if the MUX control bits were assigned to the bit posi
tions 8 and 9 (bit numbers 23 & 22 in Figure 5-2) during
AMDASM, then AMSCRM would require the following com-
mand 1o put them into the positions shown in Figure 5-2. The
AMDASM output is assumed to be on the file SYSTEM1.0B.J.
SYSTEM1.XOB is the name to be assigned to the AMSCRM
output.

A > AMSCRMAQLD=SYSTEM1ANEW=SYSTEM1 ¢r

ENTER TRANSFORMATION PARAMETERS:

9,121 er

10,83 cr

= or

-176-

CHAPTER Vill

AMPROM 29 PROM PROGRAMMER
POST PROCESSOR

AMPROM DESCRIPTION

When a user has completed an AMDASM assembly and an
optional AMSCRM execution, he may wish to output his bi-
nary object code in a form which corresponds with his
PROM's organization and/or he may wish to punch the object
code from his program onto paper tapes to be used as input
to a PROM burner.

In order to understand post processing one must know how
the PROMs are organized in the computer memory space.

PROM ORGANIZATION

If, as an example, AMDASM has been executed using the
command

A > AMDASMAP1=2800AP2=2900 cr

AMDASM generates binary object code for the executable
statements in the file named 2900.SRC.

This binary object code is output to a file called 2900.08..
For our example we shall assume that the microword is 48
bits wide and the number of executable statements is 1024,

This gives us a matrix 48 wide by 1024 deep as shown in Fig-
ure 8-1.

Bit No. 01234 c0c00cscsoscossoscsccocned?
——

Executable
Instruction
Number

PR WN=O

1023

Figure 8-1. Bit Matrix

After PROM width and depth are specified, the Bit Matrix is
subdivided fo yield a PROM MAP where each PROM is n bits
wide by m bits deep. If we assume that the initial program counter
is zero for our example, the actual PROM MAP printed might
appear as shown in Figure 8-2.

PC C1 C2 C3 C4 C5 CB C7

R1 0000 1 2 3 4 5 6 7

R2 0100 8 g9 10 M 12 13 14 { PROM
R3 0300 15 16 17 18 19 20 21 { No.
R4 0380 22 23 24 25 26 27 28

where

PC represents the initiai program counter value for that PROM
row. The PC vaiue is given in hexadecimal.

Figure 8-2. Sample PROM MAP

For the example, PROMs shall be organized as shown in
Figure 8-3.

Each executable instruction naturally has a program counter
associated with it by virtue of its position in the program and/or the
origin(s) that were set during the assembly execution.

This breakup of the matrix is now called a PROM map which
has associated with it, not only the PROMs shown, but rows
and columns as shown in Figure 8-3. Thus, we may now refer
to PROM 19 by using the digits 19, or by referencing R3 for
Row 3 or C5 for Column 5.

As shown in Figure 8-4, all PROMs in Row 1 are 256 (instruc-
tions) deep. PROMs 1, 3, 5, and 6 ‘are only 4 bits wide, while
PROMs 2 and 7 are 8 bits wide and PROM 4 is 16 bits wide.

In Row 2, all PROMSs are 512 (instructions) deep and PROMs 8,
10,12 and 13 are 4 bits wide, PROMs 9 and 14 are 8 bits wide and
PROM 11 is 16 bits wide.

Rows 3 and 4 are each 128 (instructions) deep; PROMs
15,22,17,24,19,26,20 and 27 are 4 bits wide; PROMs
16,23,21,28 are 8 bits wide; and PROMs 18 and 25 are 16
bits wide.

If the user requests printing (or punching) of PROM #1 he will
obtain data that is 4 by 256.

ifthe user requests printing of Row 3, he will obtain data (i.e., the
contents of PROMs 15 through 21) in the following form:

4x 128, 8 x128,4 x 128, 16 x 128, 4 x 128, 4 x 128, 8 x 128

If the user requests printing of Column 4 he will obtain data (i.e.,
the contents of PROMs 4, 11, 18, and 25) that is:

16 x 256, 16 x 512, 16 x 128, 16 x 128

-177-

Column # 1 2 3 4 5 6 7
Row # PROM# PROM# PROM# PROM# PROM# | | PROM#| | PROM#
1
1 2 3 4 5 6 7
2 PROM#. PROM# PROM# PROM# PROM# | | PROM#| |PROM#
8 9 10 11 12 13 14
3 | PROM# PROM# PROM# PROM# prROM# | | PROM#| |PROMS
15 16 17 18 19 20 21
4 | PROM# PROM# PROM# PROM# PROM# | | PROM#| |PROM#
22 23 24 25 26 27 28
Figure 8-3. PROM MAP
Bit No.* 0-3 4-11 12-15 16-31 32-35 36-39 40-47
e ————
Executable 0 | PROM# PROM# PROM# PROM# PROM#| |PROM#| | PROM#
Instruction to
Number 255 1 2 3 4 5 6 7
256 | PROM# PROM# PROM# PROM# PROM#| |PROM# | | PROM#
8 9 10 11 12 13 14
to
767
768 | PROM# PROM# PROM# PROM# PROM#| |PROM#| | PROM#
to 15 16 17 18 19 20 21
895
896 | proM# PROM# PROM# PROM# PROM#| |PROM#| | PROM#
to 22 23 24 25 26 27 28
1023

Figure 8-4, Organization of PROMs

-178-

POST PROCESSING FEATURES :
AMPROM 29 aliows the usef 10 specd’y ‘

& The depth (number of mstructsorIS) and wndth (bns of me

mtcroword) for each PROM.
@ Listing or suppression of listing of the PROM MAP.

e Optional punching of PROM contems on paper tape in

- BNPF or hexadecimal format.
& Listing or suppression of listing of PROM content..
& Listing of the PROM content by PROM rows or FROM
columns or by PROM number. ;
® Ophonalautomatncmvers»onofall bits exceptthe don't care”

bits:
e Specification of “don’t care” blls to be 0 or1.

EXECUTION COMMAND FOR AMPROM 29
To.execute AMPROM the general form ot the commﬁwd as

A > AMPROMAO= qqqqqqqq 099 { A optmns }

The primary part of the object code filename must be typed i the

genenc part is not specmed the defau!t .OBJis assumed

Options and their default values are shown in Table~8-1 J

 Table 8-1. AMPROM 29 Options

OPTION S

~ ABBREVIATED

. OPTION

DEFAULT

MEANING

OBJEGTAfﬁenamet“ e

or

OBJECT=filenamet

‘NONE.

This is a

- required
input.

Specifies the name of the file on
which the AMDASM object code is
located. If only the primary pari of
filename1 is input, the default

“generic .OBJ i is assumed.

NOMAP

NM

 MAP

Print the PROM map,ﬁ

~Suppress printing the PROM map. If -
| NOMAP is not specified, the program
-| automatically prints the PROM map.

HEX

BNPF

HEX

" Punch the PHOM output m hexadec:mai

format.

Punch the PROM oquut in: BNPF format.
it BNPF is not specified the output is

‘ automaucatiy punched in hexadecimal,

INVERT

- No inversion

If INVERT i is specified, all ones are.

-inverted to zeros, and zeros fo ones,
~except for bits specified as “don’t
cares”. If INVERT is not specified

there is no modification to the

_ binary object code.

PUNCHAfilename2

or
PUNCH=filename2

NOPUNCH

NP

 filename1.0UT

Specifies the name of the file or

-device where punch data is to be
: output. If not specified the output
goes to the file with the default
pame mename1 .OUT.

Suppresses punchmgk the PROM contents.
If not specified, defaults to. PUNCH.

LISTAfilename3
or -
LIST=filename3

NOLIST

NL

filenamei.P3L

Specifies the name of the output file
device where the AMPROM output listing
is o be placed. If not specified,

the output automatically goes fo the
defauilt file named filename1.P3L.

Specifies that the output is not

to be listed. This would be used
when only punching of the output is
desired. if not specified the program
defaults to LIST using the default -
file named filename?.P3L.

-179-

AMPROM FILENAMES

As part of the options the user may need to specify filename
information. Whether filename information is needed will de-
pend on whether or not the user wishes 1o receive his output
at a printer console or punched on paper tape or stored on
files with or without default name assignments.

The PUNCHAfilename and LISTAfilename must each be pre-
ceded by a blank and may be specified in any order. The
filename may be any AMDOS 29 device.

If, for- example, the user executed AMDASM with the com-
mand:

A > AMDASMAP1A2900AP2A2900 cr

the binary object code is stored on a file called 2800.084.
When executing AMPROM, only 2300 must be given as the input
filename.

Thus the command io execute AMPROM is:
A > AMPROMAOA2900 __ cr

and since no LIST or PUNCH is specified, all output will be to the
default filenames 2800.0UT and 2900.P3L.

AMPROM EXECUTION EXAMPLES

The command
A>AMPROMANOLISTAPUNCHAPUN:AOBJECTA2900 cr

specifies that fisting of the PROM content is to be suppres-
sed, the output is to be punched on paper tape, and the input
{binary object code) for execution of AMPROM is to be from a
file called 2900.0BJ.

To illustrate execution of AMPROM with list output to the list
device, the command:

A >AMPROMAO= qgqaqaqq.gggAL=LST: cr

specifies the PROM MAP and the PROM content are to be
printed on the list device, the content of the PROMs is not to be
punched, but will be stored in hexadecimal on the file with the

default name ggqqqqqq.OUT.
However,

A > AMPROMAO=0qgqqqq9.099ANOLISTANOMAPAPUNCH=PUN: cr

specifies that the content of the PROMSs is to be punched on
the paper tape punch with no listing of the PROM MAP or
PROM content.

NOQTE:

@ Each option is preceded by a required blank

e QOptions may be given in any order

e The full option name or the abbreviated option name may
be used.

e I filename1 has no generic specified, it defaults to .OBJ.

e i filename2 (PUNCH) is input without a generic, AMPROM
assumes no generic, and uses exactly what was input.-

@ |If filename3 (LIST) is input without a generic, AMPROM
assumes no generic, and uses exactly what was input.

INTERACTIVE AMPROM INPUT

Once AMPROM has begun execution the user will be acting
interactively with the console. He will receive messages from
the console and will be expected to input responses followed
by a carriage return. The terminal prints the requested output
and messages requesting additional input. When execution is
compiete, control returns to AMDOS 29.

A sample of the console messages is given below. For this
example, underlined numbers are used to illustrate the user's in-
put. Following the example is a table of the acceptable substi-
tutes which may be used for the underlined values.
After the user has input an AMPROM execution command, the
terminal responds by printing:

DONT CARES? 1 cr

ENTER PROM WIDTHS 4-8,4 cr

ENTER PROM DEPTHS 128 cr

If a MAP listing at the output device is requested the PROM
MAP is output here. Then the console prints:

WHICH PROMS DO YOU WISH TO PRINT? 5-7 cr

if printing of the PROM content was specified, the PROM con-
tent is printed here. These same PROMSs will be punched un-
less NOPUNCH was specified. The punch device should be
turned on before keying in the PROMSs to be printed and
punched.

When execution is complete, contro! is returned to AMDOS 29.

-180-

INPUT SUBSTITUTES

When the terrminzl requests information the substitutes permiited are shown in Table 8-2.

Table 8-2
AMPROM 29 Input Substitutes

Console
Prompt

Substitutes

Meaning

DON'T CARES?

Oor1

The value specified here is assigned to all “don't care™ bits in the
PROM(s). Any value except O or 1 is an error and the prompt is repeated.

ENTER PROM
WIDTHS

n is a decimal integer and each PROM is n bits wide. if the
microword size is 60 and n is given as 8, 8 PROMs will

be generated. The first seven will contain actual

microword information but the 8th PROM will contain

microword information in its leftrost 4 bits and “don’t cares” in
the 4 right-hand bits. (i.e., if the microword width is not

an even multiple of n, it is padded on the right with “don’t cares™).

feb

| is a decimal integer indicating a number of PROMs.
b is a decimal integer indicating the number of bits wide
each of these PROMSs should be

Thus, 3 « 4 means there are 3 PROMs each 4 bits wide.

Combinations
of n and
leb

For the PROM MAP (Figure 7-4), the user would write
4,8, 4,16, 224, 8.

Any combination of n and i=b is perrissible if separated
by commas and if the total number of bits is greater than
or equal to the microword width.

ENTER PROM
DEPTHS

r is a decimal integer and each PROM is r instructions
deep (long). If the binary object code is not an even multiple
of r, AMPROM fiils the final PROM locations with “don't cares”.

ted

t is a decimal integer indicating a number of PROMSs.
d is a decimal integer indicating how many words deep
each of these PROMs is to be. Thus 2 = 512 indicates
there are 2 PROMs each 512 bits deep.

Combinations

For the PROM MAP in Figure 7-4, the user wouid

ot r and write 256, 512, 2¢128.
ie0

Any combination of r and ted is permissible if separated

by commas.
WHICH PROMS Y is a decimal integer which is a PROM number. 5 means
DO YOU WISH Y list the contents of PROM #5.

TO PRINTe e =
Yi1-Yn Y, is a decimal integer specifying the number of the first

PROM to be kisted. Y, is a decimal integer specifying the
fast PROM to be listed. Thus, 2-5 specifies listing of
PROMS 2, 3, 4 and 5.

Combinations of

3, 5-7, 9 means print (and punch) PROMs 3, 5, 6, 7 and 9. All

Y and Yq-Yq combinations of Y and Y4-Y, are acceptable if separated by commas.
Cs C means column and s is a decimal integer which
specifies the PROM column desired. C4 means print
all PROMSs in column 4.
Csy-8, Print columns s4, thraugh s,,. C1-6 indicates print

PROM columns 1 through 6.

Combinations of

C5, 7-9, 11 means print columns 5, 7, 8, 9, 11.

Cs, S1-5n C3-6, 10 means print columns 3, 4, 5, 6, 10 (i.e., Cis
only given once, then the s and/or s4-s,, separated by commas).
Rs R means row and s is a decimal integer which
specifies the row desired. R1 means print all
PROMSs in row 1.
Rsy-s, List the contents of PROM rows sy, through s,,.
R2-6 means print all PROMSs in rows 2 through row 6.
Combinations of The same as columns. The R is given once, followed by
Rs, $1-8q the row numbers separated by commas.
R1, 4-6, 11-13 prints rows 1, 4, 5, 6, 11, 12, 13.
N The letter N is typed if the user wishes to indicate
none of the PROM contents are 1o be listed
A The letter A when typed means all PROMs are to be printed.

*“**The same PROMSs are printed and/or punched. Thus, all values for printing apply for punching also.

-181-

BNPF PAPER TAPE OPTION

When BNPF is specified as an option, the tape is punched in the
BNPF format. B is punched as the first character, then a P (fora
one) or an N (for a zero) is punched for each bitinthe width of this
PROM, then an F is punched as the last character for this row of
PROM data. This continues until ali rows (the depth) of the PROM
are punched.

Before the first BNPF for each PROM is punched, the program
punches identification on the tape which consists of:

e 32 Rubouts

® 4 ASCIH characters which are the PROM number

e 32 NULs to be used as the leader when loading the PROM
burner tape reader

After the PROM data is punched, 40 NULs are punched to
facilitate tape handling.

For example, if PROM#5 is 4 bits wide by 128 bits deep, and
begins at origin zero, the paper tape will appear as shown in
Table 8-3.

Table 8-3.
BNPF Paper Tape Contents

Tape Contents Content Explanation

Rubout,

° 32 Rubouts
Rubouts,
Characters 0005 } PROM number
NUL,

. 4 32 NULs
NUL3z

Character B
Character N or P
Character N or P
Character Nor P 3
Character N or P
Character F
Space

Character B }

BPNF format for one
row of this 4-bit wide
PROM

*See Note

Character N or P Repeated 127 times

. 40 trailing NULs

NUL4o

*Note: Carriage return/line feed for possible listings is inserted afier 8
words for PROMs 4 or less bits wide, after 4 words for widths of 16 or less
bits, and after one word for widths greater than 16.

HEXADECIMAL PAPER TAPE OPTION

When punching is desired, and HEX is specified or assumed by
default, the PROM contents are punched in the DATA 1/O
hexadecimal format.

The same initial data (32 Rubouts, PROM number and 32 NULs)
is punched as is punched for the BNPF format, followed by the
PROM content in hexadecimal.

For PROM:s 4 or less bits wide, one hexadecimal character and a
space is punched. For PROMs greater than 4 bits wide, two
hexadecimal characters and a space are punched. Thus, two
characters, space, two characters, space would be punched for
either 2 rows of an 8-bit PROM, or for 1 row of a 16-bit wide
PROM.

Thus if PROM#7 (16 bits x 128 words) is punched, the output
will appear as shown in Table 8-4.

Table 8-4.
Hexadeclimal Paper Tape Contenis

Tape Contenis Content Explanation
Rubout 4

. 32 Rubouts
Rubout 32
Characters 0007 PROM Number
NUL 4

. 32 NULs
NUL 32
SOH Start of Header
Character
Character
Space Contents of
Character { PROM Row 1
Character (4 HEX digits)
Space
Character
Character Repeated 127 Times

¢ *See Note
ETX End of Text
NUL,

° 40 NULs
NUL4o

*Note: A carriage retum/line feed for possible listings is inserted after 16
groups of hexadecimal characters.

-182-

CHAPTER IX
EXAMPLE OF AMPROM 29

Figure 8-1 is an example of AMPROM 29 for the Am2900 Learning and Evaluation Kit.

CONSOLE INPUT

DON'T CARES?0

ENTER PROM WIDTH?8

ENTER PROM DEPTH?16

WHICH PROMS DO YOU WISH TO PRINT?3-4

AMPROM OUTPUT

AMD AMPROM UTILITY
AM2982 KIT EXERCISE 18B

PROM MAP
pPc ¢ € €3 (4
Rl oogo 1 2 3 4

PROM CONTENTS

PC ADDP3 P4

P009 009 PO110ADD POPR11L1
gopl 091 PP110000 DOO110DL
pP02 002 D011000D PO10D00D
po03 003 0P110000 01000100
poo4 204 P1000DA0 BP1100D0
f005 005 010A00PD AODDODL
0006 006 DR110000 0ODDODDD
9907 007 01000001 0PO1000L
poos 008 00110000 POO10200
pOP9 PAS 01000010 001000P1
POOA DDA 00110008 AB109900
pP0B 008 POP100A0 01000000
popC 00C PPDOI0D 000D
poOD 0D PAODODOD PODDBDOD
MOOE DDE 10090000 00110000
pOOF DOF 00110000 00110009

PUNCH OUTPUT

3
BNNPPNNNF BNNPPNNHNF BNNPPNNNNF BNNPPHNNNF
BNPNNNHNHF BNPNNNNNNF BNNPPNNHNF BMPNNNNNPF
BNNPPANNNF BNPNKNNPNF BNNPPNNNHF BNNNPNNNNF
BNANNNNNNF BNNNNNNNNF BPHNNNNNNF BNNPPRNNNF

4
BNNNNPPPPF BNNNPPNAPF BNNPNNNNNF BNPNNNPNNF
BANPPNNNNF BNNNNNNNPF BNNNANNNNF- BNHNPNNNPF
BHANPNNNNF BNNPNNNNPF BNNPNNNNNF BNPNNNNNNF
BNNNNHANNE BRHNNNNNNNF BNNPPNNNNF BNNPPNNNNF

S

Figure 8-1. AMPROM 29 Output for Am2900 Learning and Evaluation Kit.
-183-

CHAPTER X
PROM PROGRAMMER SUBSYSTEM
SUBSYSTEM DESCRIPTION

The PROM Programmer subsystem provides the software
routines that reformat the microinstruction fields and output the
microcode to the PROM Programmer. Two program files,
PFORMAT.COM and PPROG.COM, contain the PROM Pro-
grammer subsystem software. PFORMAT.COM converts an
AMPROM output file (filename.OUT) to a DATA /O format file
{filename.DIO). PPROG.COM interfaces DATA 1/O format files
to the PROM Programmer via a set of subsystem commands.

PFORMAT COMMAND

The PFORMAT command converis an AMPROM output file to
a DATA /O PROM Programmer input file. Each PROM defined
on the AMPROM output file is defined by PROM number, on
the DATA /O input file. The format of the PFORMAT command
is:

PFORMAT filename1 (filetype)filename2(.filetype)

filename1 is the name of the AMPROM outpuit file; its filetype is
optional and will default to .OUT if omitted.

filename? identifies the DATA I/O format file; it is optional.
When filename2 is not specified, it will default to filenamed.
The filetype for filename? is also optional; it will defaulit to .DIO
if omitted.

A space is required to delimit PFORMAT from filenamel and
delimit filename1 from filename2.

PPROG COMMAND

The PPROG command selects the PROM Programmer
hardware/software interface program. When the PPROG com-
mand is entered, the system responds with a P> prompt. Any
of the following subcommands can be entered in response to
the P> prompt.

File filename.filetype
Program n

Verify n

DFile n

DProm

ECho

NOEcho

Exit

Any, or all, of the subcommands can be entered on the same
line as the PPROG command. Also, the subcommands can be
entered on a single line in response to the P> prompt. When
PPROG, the subcommands and the appropriate operands are
entered on a single command line, they must be separated by
one or more delimiters (blank, comma, left parenthesis, right
parenthesis, equal sign, or period). Only that portion of the
subcommand name which is shown in upper case letters need
be entered to activate a subcommand; the lower case letters
can be entered if desired. The following description of sub-
commands and operands also describes the sequence of op-
erations that result when a subcommand is entered.

File filename.filetype

Opens, for subsequent processing, the DATA /O format disk
file specified by the filename.filetype parameters.

Program n
Causes ihe following sequence of events to occur.

1. Prom number n from the file opened by the File subcom-
mand is read into the file input buffer. The decimal
number specified by n must be in the range of 1 to 65535.
When n is omitted, the first PROM on the file is read.

2. The PROM Programmer is queried for its PROM type;
PROM depth, width, and erased state are displayed on
the console.

3. The contents of the file input buffer are transferred to the
PROM Programmer RAM. A message is displayed on the
console stating that the transfer is taking place and the
console speaker is beeped at % second intervals to inform
the user that the transfer is proceeding normally.

4. An illegal bit test is performed to insure that the user is
not trying to unprogram a bit that is already programmed
inthe PROM.

5. The PROM Programmer RAM is programmed into the
PROM. A message is displayed on the console to inform
the user, that the PROM is being programmed. Also, the
console speaker is beeped every 2 seconds to indicate
that programming is proceeding normally. A message is
displayed on the console to inform the user that the
PROM. programming operation has been completed suc-
cessfuily.

6. The contents of the PROM are verified against the PROM
Programmer RAM to insure that programming has com-
pleted and is accurate. A successful verification message
is displayed on the console.

Verify n
Causes the following sequence of events to occur:

1. PROM number n from the file opened by the File subcom-
mand is read into the fils input buffer. The decimal number
specified by n must be in the 1 to 65535 range. When n is
omitted, the first PROM on the file is read.

2. The PROM Programmer is queried for its PROM type.
PROM depth, width and erased state are displayed on the
console.

3. The contents of the PROM are read into the PROM Pro-
grammer RAM.

4. The contents of the PROM Programmer RAM are transferred
to the PROM input buffer in System 28 memory. A message
is displayed on the console stating that the transfer is
taking place and the console speaker is beeped at %
second intervals 1o inform the user that the transfer is pro-
ceeding normally.

5. The file input buffer (written in step 1) is compared with the
PROM input buffer (written in step 4) and any differences
are displayed on the console.

DFile n

The contents of PROM number n from the open file is dis-
played on the console. The decimal number specified by n
must be in the 1 to 65535 range. When n is omitted, the con-
tents of the first PROM on the file are displayed. A file is displayed
as ASCH translated memory images.

-184-

DProm

The contents of the PROM currently in the PROM Programmer
socket are displayed on the console in ASCII translated mem-

ory images.
ECho

ECho causes all input/output transactions between the PROM
Programmer and System 29 to be displayed on the console.

NOEcho

NOEcho cancels the operation selected by the ECho subcom-
mand.

Exit

Exit terminates the PROM Programming subsystem mode and
return control to AMDOS 28.

ERROR STATUS

When any of the steps in Program or Verify fail, an error mes-
sage describing the failure is displayed on the console. If the
failing step involves the PROM Programmer hardware, the

Programmer error status word shown in Figure 10.1 is read
from the Programmer and displayed on the console. The re-
maining steps in the sequence are aborted.

Bit 31 is set, a Hexadecimal 8 is displayed, whenever any error
information is contained in the error status word. The rest of the
error status word indicates, by bits being set, what error condi-
tions have occurred. For example, the error stalus word
80CB80081 is displayed to indicate the following errors:

8 — Bit 31 is set to indicate the error status word contains
error information.

0 — No receive errors

C — Bits 23 and 22 are set to indicate a PROM related error
(bit 23) and a lost start (bit 22).

8 — Bit 19 set to indicate PROM is not blank

0 — No input errors.

0 — No input errors.

8 — Bit 7 is set to indicate that there is a RAM error.

1 — Bit 0 is set to indicate RAM end not on 1k boundary.

After being displayed, the error status word is reset to zeros.

STATUS ERROR
WORD INDICATED
Value
Number Accumulated RECEIVE ERRORS
31 8 ANY ERROR
30
(29
& HH HH HH 28
27
o 26 4 RECEIVED SERIAL OVERRUN ERROR
25 2 RECEIVED SERIAL FRAMING ERROR
H g HH HH HH 24 1 BUFFER OVERFLOW > 15 CHAR
® PROM ERRORS
23 8 PROM RELATED ERROR
} 22 4 LOST START
21 2 BUSY TIMEOUT
HH HH HH 20 1 RAM-PAK INSTALLED (“H" COMMAND)
19 B PROM NOT BLANK
} 18 4 ILLEGAL BIT
17 2 NON-VERIFY
HH HH HH 16 1 ABORT PROGRAM
INPUT ERRORS
15 8 INPUT ERROR
| 14
13
HH HH HH 12 1 COMPARE ERROR
1 8 SUM-CHECK ERROR
10 4 RECORD COUNT ERROR
| 9 2 ADDRESS ERROR. > WORD LIMIT
HH HH H HH 8 1 DATA NOT HEXADECIMAL
RAM ERRORS
7 8 RAM ERROR (HARDWARE ERROR)
6
5
HH HH HH & 4
3
2 4 NO RAM RESIDENT
1 2 RAM WRITE ERROR
HH HH ‘H H 0 1 RAM END NOT ON 1K BOUNDARY

Figure 10-1. Error Status Word
-185-

CHAPTER XI
ERROR MESSAGES AND INTERPRETATIONS
AMDASM ERRORS

Each source file input statement is processed until a single
error is detected. One missing comma between fields, for
example, would result in incorrect processing of the remainder
of the statement.

Thus, the assembler stops when an error is encountered, re-
cords the error and the statement which caused it, and pro-
ceeds to process subsequent source input statements.

Note that console error messages without an error number
are AMDOS/29 error messages.

AMDASM and AMPROM error messages will have the form

=«2 ERROR n {y}

where n is the error number and y, if present, contains the
illegal character or symbol. Fatal error messages appear on
the console output device as well as on the assembly list file.

Error messages will sometimes seem inappropriate for the
statement being processed. This occurs because the assem-
bler is unable to determine the programmer’s intent. This is
often the result of a missing comma (,), semicolon (;), blank
(A) or colon (:). ‘

Errors where n is = 100 halt execution.

It is recommended that the user read the entire error mes-
sage section.

ERROR 1 ILLEGAL CHARACTER

The character which cannot be interpreted is printed and the line
in which it occurs is also printed. This message may be generated
by:

e Striking the wrong console key.))

e A missing comma or semicolon (B#101Q#7 is not interpret-

able).)
@ A wrong number base used (B#3 or Q#8 cannot be inter-

preted).

ERROR 2 UNDEFINED SYMBOL

This message will most often occur when:

® Something is misspelled.

HERE: EQUA100)
GO.TO: DEFA HEER (the assembler cannot find HEER)

@ The # is missing after a B, Q, D, or H.

e The space is missing after definition words DEF, EQU,
SUB, WORD, TITLE, RES, ORG, ALIGN, FF, SPACE

e A symbol is referenced before it is defined by a SUB or

® 3:1 5§SU}or a hexadecimal field begins with the letlers A
through F and the H# designator does not precede the let-
ter.

ERROR 3 UNDEFINED FORMAT

The format name given is misspelied or was not defined in the
Definition Phase or the required blank was not supplied after the
format name.

ERROR 4 DUPLICATE FORMAT

The name given before a format (DEF) has already been used as
aname. If names contain more than 8 characters, the first 8 must
be unique. Check for misspelled names.

ERROR 5 DUPLICATE LABEL

This label has beenused more than once as a constantname or a
label. If the label is more than 8 characters, the first 8 must be
unique.

ERROR 6 DUPLICATE SUBDEFINE

The name given preceding a subformat (SUB) has already been
used as a name. if names contain more than 8 characters, the
first 8 must be unique. Check for misspelled names.

ERROR 7 FORMAT FIELD OVERFLOW

The user is permitied a maximum of 128 fields per format name
(DEF). This number has been exceeded. The format must be
revised and fields must be combined.

ERROR 8 SUBDEFINE FIELD OVERFLOW

The user is permitied a maximum of 128 fields per subformat
name (SUB). This number has been exceeded. Revise the sub-
format and combine fields or use two subformats for this bit
pattern.

ERROR 9 UNDEFINED DIRECTIVE

No name: was found and the characters given are not TITLE,
WORD, LIST, NOLIST, END, ORG, RES, SPACE, or ALIGN.

Check for a missing colon after a name, or misspeliing, or blanks
in TITLE, WORD, etc.

ERROR 10 ILLEGAL MICROWORD LENGTH

Each time DEF or FF is encountered, the assembler checks to
see if the sum of the bits for all fields for this format name exactly
equals the microword length.

Thus, the user is assured that each DEF or FF contains an exact
number of bits. If the number of bits in this format does not
exactly equal the number of bits given with WORD, the interpre-
tation of the faulty DEF or FF is bypassed and the assembler
attempts interpretation of the next source statement.

-186-

EF}ROF". ;1 ILLEGAL FIELD LENGTH

No field, except a “don't care” field, may be more than 16 bits in
length. The value calculated for this field cannot be represented
in 16 bits.

ERROR 12 DON'T CARE FIELD TOO LONG.

The explicit length given for a “don't care” field exceeds the
microword length specified by WORD. improper d:glts may have
been assumed for the explicit length due to a missing comma of
designator.

ERROCR 13 ARITHMETIC OPERATION ON FIXED FIELD.

I a field is defined as a variable field in the Definition File, an
expression cannot be used as a VFS in the Assembly File unless
the field contained the % attribute in its definition.

ERROR 14 ATTRIBUTE ERROR

Both the negative (—) sign and inversion (#) have been assigned
to a single variable or constant. This is not permitted. 4V—« or
4B#1011=— are meaningless.

ERROR 15 (Not used)

ERROR 16 MISSING END STATEMENT

The Definition or Assembly File is missing the END statement.

ERROR 17 ILLEGAL SYMBOL

A character other than A through Z, digits 0 through 9, or period
was used in a name, or a comma may be missing between fields.

ERROR 18 OVERLAY ERROR

This message is given when two formats are overlayed and both
of them contain constants for the same bit position. If the assem-
bler is run using each of the formats in the ove(lay staternent as a
separate format, and the output is printed in block form, the
erroneous bits are easily detected.

For example if the Definition File statements are:

A: DEFA4X,B#1011
B: DEFAB#01111,3X

and the Assembly File statement is
A&B

the overlay error message occurs.

Rerun the Assembly File with source statements given as

A
B

and block output requested which generates
XXXX |1] 011
0111 [1] XXX
1
ltcan easily be seen that bitsare causing the overlay error. The

improper DEF can then be corrected and the overlay A & B can be
used in the Assembly File statement.

ERROR 19 NO DEFAULT VALUE

A format name was defined with a variable field in the Definition
File. Since no default value was given in the definition, a variabie
field substitute must be supplied for this field when the format
name is used in the Assembly File. Check for missing commas.

ERROR 20 FIELD LENGTH CONFLICT

The calculated or implicit field length for the constant or expres-
sion given after the designator does not have the same number of
bits as the explicit fisld length. Check for a missing % or :, or a
comma missing after the previous field.

This message may be output when commas are left out. For
example,
BH#A390Q#274

is missing the comma between 3 and 9. Thus the program as-
sumes A39 is to be substituted into the 8-bit hexadecimal field.
Similarly,

8H#A3, 9Q27, 4

will generate this error message since the comma between the 7
and the 4 is misplaced.

ERROR 21 § SPECIFIED FOR NON-ADDRESS FIELD

In order to use the value of the program counter (indicated with a
$) as a VFS, that field must contain the % attribute.

ERROR 22 (Not used)

ERROR 23 MISSING DESIGNATOR

A field has been encountered which contains only decimal num-
bers. This is not permitted for a field in a DEF, SUB or FF. Decimal
numbers must be input as, n D# digits, where n is the explicit
length of the field and digits are the decimal integers which
generate the desired bit pattem or field value.

-187-

ERROR 24 SPACE DIRECTIVE ERROR

The value input following SPACE is interpreted as less than zero
or greater than the number of lines given per page.

ERROR 25 ORG SET TO LESS THAN CURRENT PC

When ORG is encountered, the value given is compared with the
current program (location) counter. if ORG is less than the pro-
gram counter, the value given with ORG is ignored.

AMDASM ERRORS WHICH HALT EXECUTION

Error messages with n = 100 cause execution to stop. They are
listed below:

ERROR 100 COMMAND OPTION‘SYNTAX ERROR

The input command contains an error. Check for correct spelling
of filenames and options, spaces between options, and correct
drive specification with filenames.

ERROR 101 DEF TABLE OVERFLOW

ERROR 102 SUB TABLE OVERFLOW

ERROR 26 NO FORMAT NAME AFTER &

When a line ends with an & and no continuation (/) is given at the
beginning of the next line, this error is generated. A format name
is missing after the &, ora/is missing on the continuation line.

ERROR 27 (Not used)

ERROR 28 ADDRESS NOT IN CURRENT PAGE

When the user gives a label or a label$ as a VFS or has defined
his variable field with the $ attribute, this message will be gener-
ated if the left bits to be truncated do not match the corresponding
bits of the current program counter.

ERROR 29 LENGTH REQUIRED FOR $ MODIFIER

Paged addressing (use of the $ as a modifier) requires the field
length before the symbol in FF statements. Thus, B6SYMBOLS is
correct but SYMBOLS is incorrect.

ERROR 30 ILLEGAL FIELD LENGTH IN FF STMT.

Afield is greater than 16 bits in a FF statement. Only “don’t care”
fields may be larger than 16 bits.

ERROR 31 (Not used)

ERROR 32 NO EXPLICIT LENGTH BEFORE (

An expression in a FF statement must be enclosed in (). The
explicit field length must precede the (.

ERROR 103 EQU TABLE OVERFLOW

ERROR 106 FIELD TABLE OVERFLOW

Errors 101, 102, 103 and 106 occur when the amount of memory
available has been exceeded.

ERROR 104 INCORRECT OR MISSING WORD SIZE

Either the WORD n command is not given as the first command
(orthe first command after TITLE) or the value given fornis<1or
> 128.

ERROR 105 UNEXPECTED END OF FILE

The user has given an incorrect file name or the source file is not
correct. AMDASM has encountered an end of file when it was still
expecting data.

AMSCRM ERRORS

The following list illustrates the Error Messages output by
AMSCRM:

ERROR t: COMMAND OPTION ERROR

There is an error in the execution command. Check for de-
limiters, correct option spelling, etc.

ERROR 2: INPUT/OUTPUT FILE NOT SPECIFIED

The input or output file was not specified in the execution
command, or an incorrect filename was given.

ERROR 3: FIELD LENGTH EXCEEDS MAXIMUM

The maximum width of any fisld to be moved (W) is 16.

-188-

ERROR 4 F!&LD EXCEEDS MVJP.O'IIORD SiZE

The mx number given or the number of bns to be moved is

incorrect. For example. if the mgcrmvord is 32 bits wide, and :

the parameters :

10‘5 28 : N o
are glven the pfogram aﬂempts 1o move 5 bt!s to posztnons

28, 29, 30, 31, 32. This is impossible since the bit posmons
tor a 32 bit mscroword on!y range from 0-31 . ,

"ERROR 5: TRANSFORMATlON PARAMETER ERROR

An mcorrect charader or value has been gwen m the users :

input S,,, Dy Wyora comma is massmg between 8. D, or w.

ERROR 6: TRANSFORMED F!ELDS OVERLAP

if the user attempts to move bsts mlo posmons where
AMSCRM has already moved bits, ihls error occurs. For
example. the parameters : :
69,3
15, 11 3 .
would generate this error since they anempt to move two dif-
“ferent bits mto bit posmon 11.

‘Anpnom Ena'oﬂs -

ERROFI 1 DON‘T CARE DEFiNITION ERFIOR

A value other than zero or one was input as the value for
“don’t care” bits. “The user has input an incorrect characier.

ERROR 2 WIDTH INPUT SYNTAX ERROR :

The PROM wudlh spectfaed usung n. and/or lsb has been stated
moorrecﬁy Check for missing commas or astensks

: Eéaoh 3 WIDTH EXCEEDS MICROWORD S’ZE :

The width given for all of the PROMs totals to so many bits
that at ieast one . ‘additional PROM width is. being specified.
For exampie, if the microword width is 60 and PROM width is
specified as 9=8, an error will be generated as there are 12
(72-60) extra bits specified ‘which is greater than the 8-bit
‘width of each PROM. Program execution stops. However, 8+8
will riot generate an error since the extra 4 bits (64-60) will fn
\mthm one B-bﬂ wxde PROM

ERROR 4 T00 MANY PROM COLUMNS

The useris limited to 32 columns in hls PROM MAP. When a
number of columns greater than 32 is specified this error occurs.

ERHOR 5 DEPTH INPUT SYNTAX ERROR

“The data (r and/or ted) specufytng the PROM depths has been
input incorrectly. Check for missing comkmas or asterisks.

; ERROR 6 WARN!NG DEPTH EXCEEDS M‘AX!MUM‘P‘C

The depth specmed by the user will requ:re at Ieast one addmona!
PROM mled with “don't cares”. :

. Thus, if tﬁe object code dep:h is120 words and the uée} specifies

~ 3=64fort=d, the extra 72 words are flagged as an error. However,

if the user specmed 2+64 (or 128) the extra 8 words would simply
be filled with “don’t cares”. This is issued as a warning message.
The additional PROM is filled with “don’t cares’ and the program
commues executmg o

ERROR 7 TOO MANY PROM ROWS _

APROMMAP may contain a maximurm of 64 rows. This provides
for 64K of storage if the user has chosen 1K PROMs. A PROM
MAP with more than 64 rows is not permitied.

ERROR 8 ILLEGAL VALUE FOR ﬂows OR COLUMNS

The user has mput somethmg other than a decimal mteger Y or
Rs or Cs or the leners Nor A. g

* The user may have forgotten ihe = belween Yy and Ynor Cs,

and Shr etc

ILLEGAL PROM NO., ROW, OR COLUMN

ERROR 9
: DESIGNATION

The user has requested a PROM number or a PROM row or
column using a decimal value greater than any of the PROM
numbers PROM row numbers or PROM ootumn numbers.

ERROR 10 UNEXPECTED END OF FILE ON INPUT FILE.

'Tms error on)y occurs when input to AMPROM is from a ﬁla
“(i.e., the user is not inputting the data interactively). A line giv-

ing the “don’t care” value, the PROM width or the PROM
depth, or the printing information has been omitted. i

ERROR 100 COMMAND OPTION SYNTAX ERROR

This -error qécurs due to illegal command options or illegal
syntax.

Execution halts and the correct command must be entered.

Check for misspelling, missing blanks or =

,-Or incorrect drive
specifications.

NOTE: Errors 1, 2 and 5 are indicated on the console and
the previous data request is repeated. In order to end this
loop, the user must input correct data or, if he inputs a Control-C,
the loop ends and the system is rebooted.

-189-

AMDOS 29 ERRORS

if 'a system error occurs which is relsted to AMDASM 29,
AMSCRM 29 or AMPROM 29, AMDOS 29 outputs the following
error messages on the console:

(name) FILE NOT FOUND

The (name) input by the user cannot be located on the desig-
nated drive. Check for misspelling of the filename or the
wrong drive designator.

FILE EXTENSION ERROR

This is a system error indicating an attempt to write outside
the current file extent.

END OF DISK DATA ERROR

No more disk space for file data. Delete files from cu ‘en drsk
or assign files to another disk. , =

NO DIRECTORY SPACE

The diskette directory is full. The user must indicate output is
to go to another drive or he must make room on this diskette
by deleting some files.

NOTE: if the user has inserted a disk which is write protected, he
will receive a variety of error messages including:

VERIFY ERROR
WRITE PROTECTED
FILE ERROR
CLOSE ERROR

eic.

-190-

APPENDIX A

ERRORS

AMDASM ERRORS

ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR
ERROR 10
ERROR 11
ERROR 12
ERROR 13
ERROR 14
ERROR 15
ERROR 16
ERROR 17
ERROR 18
ERROR 19
ERROR 20
ERROR 21
ERROR 22
ERROR 23
ERROR 24
ERROR 25
ERROR 26
ERROR 27
ERROR 28
ERROR 29
ERROR 30
ERROR 31
ERROR 32

CONOO D WN -

ILLEGAL CHARACTER

UNDEFINED SYMBOL

UNDEFINED FORMAT

DUPLICATE FORMAT

DUPLICATE LABEL

DUPLICATE SUBDEFINE

FORMAT FIELD OVERFLOW
SUBDEFINE FIELD OVERFLOW
UNDEFINED DIRECTIVE

ILLEGAL MICROWORD LENGTH
ILLEGAL FIELD LENGTH

DON'T CARE FIELD TOO LONG
ARITHMETIC OPERATION ON FIXED FIELD
ATTRIBUTE ERROR

(Not used)

MISSING END STATEMENT

ILLEGAL SYMBOL

OVERLAY ERROR

NO DEFAULT VALUE

FIELD LENGTH CONFLICT

$ SPECIFIED FOR NON-ADDRESS FIELD
(Not used)

MISSING DESIGNATORS

SPACE DIRECTIVE ERROR

ORG SET TO LESS THAN CURRENT PC
NO FORMAT NAME AFTER &

(Not used)

ADDRESS NOT IN CURRENT PAGE
LENGTH REQUIRED FOR $ MODIFIER
ILLEGAL FIELD LENGTH IN FF STMT
(Not used)

NO EXPLICIT LENGTH BEFORE (

AMDASM ERRORS WHICH HALT EXECUTION

ERROR 100
ERROR 101
ERROR 102
ERROR 103
ERROR 104
ERROR 105
ERROR 106

COMMAND OPTION SYNTAX ERROR
DEF TABLE OVERFLOW

SUB TABLE OVERFLOW

EQU TABLE OVERFLOW

INCORRECT OR MISSING. WORD SIZE
UNEXPECTED END OF FILE

FIELD TABLE OVERFLOW

AMSCRM ERRORS

ERROR 1
ERROR 2
ERROR 3
ERROR 4
ERROR 5
ERROR 6

COMMAND OPTION ERROR

INPUT QUTPUT FILE NOT SPECIFIED
FIELD LENGTH EXCEEDS MAXIMUM
FIELD EXCEEDS MICROWORD SIZE
TRANSFORMATION PARAMETER ERROR
TRANSFORMED FIELDS OVERLAP

AMPROM ERRORS

ERROR 1
ERROR 2
ERROR 3
ERROR 4
ERROR 5
ERROR 6
ERROR 7
ERROR 8
ERROR 9
ERROR 10
ERROR 100

DON'T CARE DEFINITION ERROR

WIDTH INPUT SYNTAX ERROR

WIDTH EXCEEDS MICROWORD SIZE

TOO MANY PROM COLUMNS

DEPTH INPUT SYNTAX ERROR

WARNING DEPTH EXCEEDS MAXIMUM PC
TOO MANY PROM ROWS

ILLEGAL VALUE FOR ROWS OR COLUMNS
ILLEGAL PROM NO., ROW, OR COLUMN
DESIGNATION

UNEXPECTED END OF FILE ON INPUT FILE
COMMAND OPTION SYNTAX ERROR

AMDOS 29 ERRORS

(filename) FILE NOT FOUND
FILE EXTENSION ERROR
END OF DISK DATA ERROR
NO DIRECTORY SPACE

VERIFY

WRITE PROTECTED

FILE ERROR

CLOSE ERROR

-191-

AMDASM 29 MICROCODE OBJECT FILE

DESCRIPTION

APPENDIX B
FORMAT
BYTE
NUMBER
0-59
60
61-62
63-64
65
*66-67

*68-(68+2m—1)
*2(68+2m) — (68+4m~1)

Title record (60 bytes)

Microword size (i.e., width

in bits)

Maximum location (program)

counter value

Number of microinstructions

in file

m = Number of 16 bit words
required for each
microinstruction

}One microinstruction record

*| ocafion (program) counter value.

**Mask defining don't care fields bit = 1~ means this is'a
don't care bit; bit 0 — means this is a defined bit.

==*Contents of microinstruction. If corresponding bitot mask = 0, this
bit is a defined value. Don't care bits = 0.

Subsequent microinstruction records contain « , « « |, and
% H,

NOTE:
1. All values are binary.

2. Bytes 61 and 62 are stored low order byte first, high order
byte second, (e.g., if the value is 01FF it would be stored as
FF,01). This also applies for bytes 63-64, 66-67, the mask
and the microinstruction which are stored and written as
8080 addresses (i.e., 2 bytes with low order first).

3. If the microcode is not continuous (due to the use of ALIGN,
ORG or RES), there is no data stored for the “empty” words
of microcode.

-192-

APPENDIX C
AMDASM 29 COMMAND SUMMARY

Definition Phase

TITLE Max 60 characters

WORD n n=< 128

EQUA Name:EQUAconstant/expression

SuUBA Name:SUBAfield, . . . 10 fields max

DEFA Name:DEFAfield, . . . 30 fields max

NOLIST Do not print following statements

LIST Print following statements

END End of Definition Source File
Assembly Phase

TITLEA Maximum 60 characters

EQUA Name:EQUAconstant/expression

NOLIST Do not print following statements

LIST Print following statements

f.nA Format nameAVFS, . . . (from DEF)

FFA Free format FFAfield, . . . max 30

SPACEAN Spaces n blank lines

EJECT Ejects page

ORGAN Resets program counter (forward)

RESANn Reserves n words of code

ALIGNAN Sets PC to next even multipie of n

LABEL: Precedes f.n. or FF, value = PC

LABEL: Entry point for mapping PROM

; Comment statement

Notes:

A = Required space

MNames = B characters, no blanks
Char 1 = A-Z, or Char 2-8 = A-Z, 1-9.
{} = Optional

-193-

APPENDIX D
AMDASM 29 FIELD AND OPERATOR INFORMATION

CONSTANTS, EXPRESSIONS, CONSTANT FIELDS
{n} des digits {mod}

VARIABLE FIELDS

n V {attr} {des} {digits} {mod} (digits are default value)
nV {attr} X (defaults to X)
max n = 16

DON'T CARE FIELDS
nV{attr} X max n = word size

MODIFIERS (mod) and ATTRIBUTES (attr)

Inversion
- Negation
% Right justify or field has expression
o : Truncation
$ Paging (relative addressing) ATTRIBUTE only, sets % and :

EXPRESSION OPERATORS

+ Add
~ Subtract Evaluated left to right
Multiply
/Divide
DESIGNATORS (des) VARIABLE FIELD SUBSTITUTES (VFS)
B# Binary Label
D# Decimal Label$
Q# Octal Expression
H # Hexadecimal Digits
Des digits {mod}
Constant name
Notes: Atir = Attribute
{} = Optional Mod = Modifier
Des = Designator Digits = Numbers

-194-

DATA 1O PO.Box 308/1297 NW.Mall Issaquah, Washington 98027 (206) 455-3990 Telex 320290

Bidirectional Communication Between
Data I/0 Programmers and
AMC Development Systems

Data 1/0 Models 7 and 9 and Systems 17 and 19
programmers communicate directly with AMC's
System 29/05 and AmSys 8/8 Microcomputer
Development Systems in the MOS Technology data
format.

N
\
\ N
\ N
\ N
N
N
\ %
INTRODUCTION N
\‘«
One of t!-' e. adva‘n‘tages of an mt'elhgent. PROM 8/8 development systems, using the MOS Technology
programmer is its ability to communicate with a format

development system in a compatible format without the use
of an intermediate transmission medium such as paper tape. INTERFACING THE PROGRAMMER AND
This direct:data transfer not only saves time, but it also

reduces the possibility of transmission errors. By using a THE DEVELOPMENT SYSTEM

programmer that can accept data in the format specified by

the development system manufacturer, the user is spared Required Equipment

the task of writing, testing and debugging a format- X -
translation routine. 1. One of the foliowing Data 1/0 programmers:

AMC offers a remote control driver' for use with the }
Data 1/0 System 19 equipped with remote control (part @ Model 7 or Model _9' wnh' MQS Technology format
number 880-1902), but that particular application allows data (085-0081) and sgnat 1{ O interface (950-0045)
transfer from the development system to the programmer @ System 17, conffguratfon 990-1712
only. ® System 19, configuration 930-1301, -1802 or -1803

This note explains the method of bidirectional
communication between Data 1/0 programmers and AMC
development systems. Data 1/O Models 7 and 9 and
Systems 17 and 19, with or without remote control, can
communicate directly with both the AMC 29/05 and AmSys

2. AMC AmSys 8/8 Microcomputer Development System,
with serial-printer option
or
AMC System 29/05 Microcomputer Development System

020-1007
-196- SEPT 80

lntarc nn ction L .
ennectio . demonstrate how the end-ormeriecmd: is calculated.

The AmSys 8}8 commumcates via its P11 senai port.
In order to use this port the 8/8 must be equxpped with the

serial-| pnmepport hardware option. .~ . The MOS Technology Format
The System 29/05 communscates via the ser:at port e
iabeled Reader/Punch Port. i " Datais ergamzed into records charactenzed by
Connect the programmer to the m:crocomputer system " expressed addresses ‘and error-check codes. The
as shown in Figure 1. S : & o ‘programmet can accept addresses in ncnsequennal order.
The data in each record is sandwiched between a
Microcomp’utef e - e seven-character prefix and a four-character suffix. The
System : . Programmer *number of data bytes in each record must be mdscmed by
S . S e ‘the byte count in the prefix. The input file can be dwnded
pin2 [F—————— pin2 mto records of various lengths. .
pin3 [—————={1pin3 - Figure 2 simulates a series of va lid data records. Each
pin 7 D"-“—“"*—"'"{_‘ ;Jin Tosniiiny data record begins with a semicolon {;}. The programmer
s will sgnere all characters received prior to the first.
Flgure 1. Intarconnectlon Cabte e ‘semicolon. All other characters in the record must be hex
. digits (0—9, A—F). A two-digit byte count follows the start
- This cabte may be used thh either the AmSys 8/8 or - character; the byte count, expressed in hexadecimal digits,
the System 29/05 and may be pu:chased from AMC’ by e “must equal the number of data bytes in the record: The
spec;fymg pan number 71(3111 : T s next four digits make up the address of the first data byte in-

: : the record. Data bvtes foﬁow, each represented by two
DATA-TRANSM!SSION PRO hexadecimal digits. :
. . ; .- The suffix is a four- character checksum which
requires in its input.command represents the sixteen- bxz binary sum of at bytes in the

sequence an“"end»cf file"" record Without this record, the * record including the address and byte coum Carry from

command sequence will not be executed. The end-of-file the most sngmfxcam bit is dropped

record is determined by the MOS Technology format. The The. end of-file record begins with a byte whsch is

foliowing paragraphs and F:gure 2 explam the format and } always % fsitowed by a checksum and a record count.
Byte Count: hex "“’“b?f Qf‘ - it Checksum 2. byte binary summation uf preceding

data bytes intherecord ~bytes in the record (including address and data
: - Lo . ‘bytes), in hexadecnmai notation

Hex

Start: L :
. Address . Hex Data Bytes

Character

1000 AA55AA55AA55AA AA55AA55AA55AA55 80
e 10001OAABSAAESAA55AA55AA55AA55AA55AA550818
1OQGZOAASSAASSAASSAASSAASSAASSAA55AA550828
100030AA55AA55AA55AA55AA55AA55AA55AA550830
004,

End-of-File -

Record T :

 Start
Chsracter

_Record Count: hex number of data
records in the file

. ‘Che‘cksu‘m: hex sum of the byte count and the record
count in the End:of-File record

& Byte Coum hex number of
data bytes in the record—
always 00 in the End-of-File - -
record

Figu}é 2. Specifications for Valid MOS Technology Data Files

-196-

NOTE Model 9: The format is selected while
initiating the data transfer in step 9.
The end-of-file record may be displayed
on the terminal by entering the following System 17: No selection is.necessary.

command sequence.
System 19: Press SELECT

AmSys 8/8: Key in COPY sp CON: = RDR: Return Key in 81
Press START

System 29/05: Key in PIP sp CON: = RDR: Return
9. Programmer: Initiate an output operation.

Programmer: Initiate an output operation as described

in steps 8 and 8, below. If System 19 BLOCK LIMITS® are Model 7: Press PROGRAM
to be used in transferring data from the programmer to the Press and hold 1/0
development system, the same limits must be set at this Press EXECUTE
time in order to establish the correct end-of-file record.
Model 9: Press PROGRAM
COMMUNICATION WITH THE AmSys 8/8 Press and hold 1/0
Press FWD repeatedly until 81
Uploading Data from the Programmer to the appears in the display
AmSys 8/8 Press EXECUTE
1. Turn both systems ON. System 17: Press MODE SELECT until the
REMOTE OUTPUT light comes ON
2. AmSys 8/8: Insert AMDOSBS diskette to drive A Press START
(bottom drive).
System 19: Press SELECT
« 3. AmSys 8/8: Initialize the system according to the Key in D5
AMDOS operating procedure. Press START
4. Make sure both systems are set to 9800 baud. Downloading Data from the AmSys 8/8 to the
Programmer
5. AmSys 8/8: Check that the copy utility is available on
disk drive A. Complete the following sequence to input data to the
programmer.
6. AmSys 8/8: See A= " on the display. This means the
system is ready. 1. Turn both systems ON.
7. AmSys 8/8: Key in the input command: 2. AmSys 8/8: Key in the output command:
COPY sp file name = RDR:[Q; end-of-file record Ct/Z E] COPY sp PUN: = file name
Return
Do not press Return at this time.
NOTE
3. Programmer: Initiate an input operation. Step 4 must
When the file name is specified in an then be executed before the programmer’s timeout
upload or download operétion, it must period expires.
include any attribute or extent of that file.
For example, if the file name is PROM1 and Model 7: Press LOAD
the extent of the file is .DIO, the file name Press and hold 1/0
to be used in the command sequence Press EXECUTE
would be PROM1.DIO.
Model 9: Press LOAD
8. Programmer: prepare for communication in the MOS Press and hoid 1/0
Technology format. Press FWD repeatedly until 81
appears in the dispiay
RModel 7: Mo selection is necessary. Press EXECUTE

-197-

Press MODE SELECT until
REMOTE INPUT light is ON
Press START

System 17:

Press SELECT
Key in 81
Press START-
Press SELECT
Key in D1
Press START

System 19:

4. AmSys 8/8: Press Return

COMMUNICATION WITH THE
SYSTEM 29/05

Uploading Data from the Programmer to the
Systemn 28/05

4. Turn both systems ON.
2. System 29/05: Insert AMDOS 29 diskette to drive A.

3. System 29/05: Initislize the system according to the
AMDOS operating procedure.

4. Make sure the programmer is set to 600 baud.

5. System 28/05: Ses “A> " on the display. This means
the system is ready.

6. System 29/05: Key in the input-command sequence.

PIP sp file name = RDA:[Q;end-of-file record Ct/Z E]
Return

NOTE

When the file name is specified in an
upload or download operation, it must
include any attribute or extent of that file.
For example, if the file name is PROM1
snd the extent of the file is .DIO, the file
name to be used in the command sequence
would be PROM1.DIO.

7. Programmer: Initiate an oulput operation.

Model 7: Press PROGRAM
Press and hold 1/0
Press EXECUTE

Model 8: Press PROGRAM
Press and hold 1/0
Press FWD repeatedly until 81
appears in the display
Press EXECUTE

Press MODE SELECT until
REMOTE OUTPUT light is ON
Press START

System 17:

Press SELECT
Key in 81
Press START
Press SELECT
Key in DB
Press START

System 19:

Downloading Data from the System 29/05 to the
Programmer

1. Turn both systems ON.

2. System 29/05: Key in the output command:
: PIP sp PUN: = file name

Do not press Return at this time.

3. Programmer: Initiate an input operation. Step 4 must
then be executed before the programmer’s timeout
period expires.

Model 7: Press LOAD
Press and hold 1/0
Press EXECUTE

Model 9: Press LOAD
Press and hold 1/0
Press FWD repeatedly until 81
appears in the display
Press EXECUTE

System 17: Press MODE SELECT until
REMOTE INPUT light is ON
Press START
System 19: Press SELECT

Key in 81
Press START
Press SELECT
Key in D1
Press START

4. System 29/05: Press Return
PROGRAMMING A PROM

A typical application of this interface is the situation in
which the PROM-based software for a system needs to be
examined in the development system and debugged. The
procedure involves 1) removing the PROMs from the
system, 2) loading the programmer RAM with the PROM
data, 3) uploading the data to the development system,

4) editing the data, 5) downloading the edited data to the
programmer and 6) burning a new PROM. The following

-198-

EXERCISE SOLUTIONS

-199-

-200-

EDSYS29 PAGE 1

LABS AND EXERCISES
FILENAMES

ANSWERS

ARE THESE PROPER FILE NAMES OR FILE NAME REFERENCES?

Y __ DOOR.DEF
Y ___DOOR.*

Y B:*.DEF
Y D?0R.D?F
N 123.456

Y ___TEMP
Y__DOOR.SRC
Y _ B:DOOR.SRC
Y k%

Y BiX?X.*
N___1-2-3

Y B:TEMP

WHAT EXTENSION NAME IS REQUIRED FOR THE DEFINITION FILE
BEFORE IT CAN BE ASSEMBLED VIA AMDASM?

.DEF

WHAT EXTENSION NAME IS REQUIRED FOR THE SOURCE FILE BEFORE IT
CAN BE ASSEMBLED BY AMDASM?

«.SRC

IS THE EXTENSION REQUIRED WHEN CALLING FOR AN ASSEMBLY?

FILE MUST HAVE AN EXTENSION
THE EXTENSION NAME IS NOT REFERENCED

-201-

EDSYS29 PAGE 2
LABS AND EXERCISES
AMDASM - GENERAL

ANSWERS

WHAT SYMBOL STARTS A COMMENT?

WHAT SYMBOL STARTS A LINE THAT IS A CONTINUATION OF THE
PRECEEDING LINE?

/
WHAT IS THE DESIGNATOR FOR A HEX CONSTANT?
H#
HOW MANY CHARACTERS CAN BE IN A VARIABLE NAME?
MORE THAN YOU NEED - ONLY THE FIRST 8 ARE REFERENCED

WHAT CHARACTERS MAY BE THE FIRST CHARACTER IN A VARIABLE
NAME?

A - Z AND .
WHAT DETERMINES IF % IS A MODIFIER OR AN ATTRIBUTE?
ITS PLACEMENT RELATIVE TO THE BASE DESIGNATOR
WHAT IS THE ATTRIBUTE §$ EQUIVALENT TO?

: AND %

-202-

EDSYS29 PAGE 3

LABS AND EXERCISES
AMDASM - GENERAL

IF NO BASE IS GIVEN IN AN EQU STATEMENT, WHAT IS THE DEFAULT?
D#

IF NO BASE IS GIVEN IN A DEF STATEMENT, WHAT IS THE DEFAULT?
B#

IF NO BASE IS GIVEN IN AN ASSEMBLY STATEMENT VARIABLE FIELD
SUBSTITUTION, WHAT IS THE DEFAULT?

THE DEFAULT BASE VALUE OR D#

CAN EQU STATEMENTS APPEAR IN THE DEF AND SRC FILES?
YES

CAN DEF STATEMENTS APPEAR IN THE DEF AND SRC FILES?
NO, USE FF IN THE SRC FILE

WHAT IS THE STATEMENT WORD USED FOR?

TO SPECIFY THE MICROWORD WIDTH, AND FOR CHECKING
THAT AGAINST THE DEF STATEMENT WIDTHS

-203-

EDSYS29 PAGE 4

LABS AND EXERCISES
AMDASM -~ GENERAL

HOW WIDE CAN A VARIABLE FIELD BE (NUMBER OF BITS)?
16 BITS
HOW WIDE CAN A DON'T CARE FIELD BE?
UP TO THE MAXIMUM MICROWORD WIDTH (64 OR 128)

WHAT IS THE MAXIMUM NUMBER OF FIELDS ALLOWED IN A DEF
STATEMENT?

30

-204-

o

