Q5000 Bipolar Array Series (804)

Section 6: Macro Library

 \bigcirc

)

6-1-2

Ć

(

6-1-1 Q5000 TTL MACROS

• FOR TTL INPUT/OUTPUT - +5V POWER SUPPLY CIRCUIT

Q5000 TTL INPUT

page & name OPTIONS cells description 6-1-3 IT11 S,H 1 INPUT WITH BUFFER, COMPL. OUTPUTS

Q5000 TTL OUTPUT

page # name OPTIONS cells description 6-1-4 CT30 S.L.B 1 OUTPUT, 3-INPUT OR BUFFER

- 6-2-1 Q5000 TTLMIX MACROS
- FOR TTL INPUT/OUTPUT IN ECL/TTL MIXED CIRCUITS WITH TWO POWER SUPPLIES (-5.2V, +5V; ECL 10K); (-4.5V, +5V; ECL 100K)

Q5000 TTLMIX INPUT

page #	name			description
*********	******			*****************************
6-2-3	IT40	S	1	INPUT WITH OR/NOR BUFFER
6-2-4	IT45	S	1	UNBUFFERED INPUT
6-2- 5	IT58	S,H	1	3-STATE ENABLE-DRIVER (EXTERNAL)

Q5000 TTLMIX OUTPUT

page #				description
==============	FEEEEE	********		***************************************
6-2-6	OT 57	S,L,H	1	3-STATE ENABLE DRIVER (INTERNAL)
6-2-7 6-2-8			1 1	OUTPUT, 2-INPUT OR BUFFER 3-STATE OUTPUT - OR GATE

Q5000 TTLMIX BIDIRECTIONAL

page #	name	OPTIONS	cells	descripti	lon
	*******	********			
6-2-9	UT 6 6	S,L,H	1	BIDIR I/O	2-INPUT OR

6-3-1 Q5000 ECL MACROS

• FOR ECL INPUT/OUTPUT IN ECL, +5V REF ECL, MIXED ECL/TTL AND MIXED +5V REF ECL/TTL CIRCUITS

Q5000 ECL INPUT

page # nam			description
		1	BUFFER, SUPER-DRIVER
6-3-3 IE2 6-3-4 * IE2		2	DIFFERENTIAL INPUT
	55 05	1	
		1	UNBUFF. INPUT COMPENSATOR
6-3-6 IE8	5 S 6 S	1	PROGRAMMABLE THERMAL DIODE
6-3-7 IE8 6-3-8 IE8 6-3-10 IE8	6 5 8D D	1 1 1 1	DIFF. INPUT, COMPL. OUT
6-3-8 158	ע עא	1	DIFF. INPUT, COMPL. OUT
6-3-10 IE8	9D D 0 S	1	DIFF. INPUT, BUF, COMPL.
6-3-12 IE9		1	BUFFER, COMPL. OUTPUTS
	3 S	2	DIFFERENTIAL INPUT - FAST
6-3-14 * IE9	9V V	2	DIFFERENTIAL INFOL - FAST
Q5000 ECL OUT	PUT - Oxnn	- BUFI	FERED INTERNALLY
page 🖸 nam	e OPTIONS	cells	description
	EEDEEFFFAAS		+5V REF 50.0bm
OENN IS FOR	ECL IUK, -		R +5V REF, 50ohm
OKNN IS FOR	ECL TOOK,	-4.57 (OR +5V REF, 50ohm
	A 0	2	DIFFERENTIAL ECL OUTPUT
6-3-15 OE1			
6-3-16 OE1		1	2 - 1 MOV (VTN)
6-3-17 * 0x7		1	2:1 MUX (YIN) 3-INPUT OR/NOR (YI) 3-INPUT OR/NOR (YIN) 2-INPUT EXOR/EXNOR (YI) THERMAL DIODE TERMINATION
6-3-19 * Ox8		1	3 - IN PUT OR NOR (II)
6-3-20 * 0x8		1	2-INFUL DYAR (IIM)
6-3-21 OE8	555	1	THERMAL DIODE TERMINATION
6-3-22 OE8		2	DIFF. ECL OUTPUT - FAST
6-3-23 * OE9	<i>,</i> / / /	2	DIFF. ECL OUTPUT - FAST
Q5000 ECL BII	DIR		
page # nam			description
6-3-24 UES		1	BIDIR I/O WITH BUFFER

SAMPLE I/O INTERCONNECTIONS: 6-3-25 ECL BIDIRECTIONAL

6-3-26 TTL IN STD AND +5V REF ECL CIRCUITS

C

6-4-1 05000 SERIES INTERNAL LOGIC MACROS ADDERS+ page # name OPTIONS cells description 6-4-3 AD05 S,L,H 1 1-BIT FULL ADDER 6-4-4 ADD00 S,L,H 5 4-BIT CRY-LOOK-AHD, COUT 6-4-8 ADD02 S,L,H 5 4-BIT CRY-LOOK-AHD, P, G (SEE ALSO CPG02) COMPARATORS page # name OPTIONS cells description 6-4-12 CMP00 S,L,H 4.5 4-BIT COMPARATOR CARRY-PROPAGATE GENERATORS page # name OPTIONS cells description 6-4-15 CPG02 S,L,H 4 4-BIT CARRY-LOOK-AHEAD GEN. COUNTER MACROS page # name OPTIONS cells description 6-4-18CTR02S,L,H64-BITUPCOUNTER6-4-22CTR04S,L,H64-BITDOWN-COUNTER 6-4-22 DECODER MACROS page # name OPTIONS cells description

EXOR/EXNOR-NETWORK MACROS

page 4 name	OPTIONS cells	description
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	S,L,H 0.5 S,L,H 1 S,L,H 0.5 S,L,H 1 S,L,H 0.5 S,L,H 0.5 S,L,H 0.5 S,L,H 0.5 S,L,H 0.5 S,L,H 0.5	3-INPUT OR-EXOR/EXNOR 5-INPUT OR-EXOR 3-INPUT EXOR/EXNOR TRIPLE 2-INPUT EXOR 4-INPUT EXOR 4-INPUT EXNOR TRIPLE 2-INPUT EXOR 3-INPUT EXOR/EXNOR 2-TERM, 2-INPUT OR TO EXOR/EXNOR
6-4-41 * EX59	S,L,H 0.5 S,L,H 0.5 D 0.5	DUAL 2-INPUT EXOR DUAL 2-INPUT EXOR DRIVER 2-INPUT EXOR

FLIP/FLOPS

pag e #	name	OPTIONS	cells	description
6-4-43	FF]3	S,L,H	1	D F/F, AR
	FF15	S,L,H	1	D F/F, AR, Q, QN
6-4-45		S, L, H	1	D F/F, AS, Q, QN
6-4-46		S,L	0.5	HIGH DENSITY F/F, Y
6-4-47		S,L	0.5	HIGH DENSITY F/F, YN
6-4-48		S,L,H	1	2:1 MUX D F/F, AR
6-4-50		S,L,H	1	D F/F, AS, AR, Q, QN
6-4-51 *		S,L,H	1	D F/F, AS, AR, Q, QN
6-4-52		S, L, H	1	3:1 MUX D F/F
6-4-54		S,L,H	1	3:1 MUX D F/F, AR
6-4-56 *	FF70	S	1	METASTABLE D F/F RISING
6-4-57 *		S	1	METASTABLE D F/F FALLING
6-4-58 *		S	1	METASTABLE D F/F RISING, AR
6-4-59 *	FFF 05V	vv	2	MSI D F/F, AR - FAST

GATES - BASIC LOGIC FUNCTIONS

page #	name	OPTIONS	cells	description
6-4-61 6-4-62 6-4-63 6-4-64 6-4-65 6-4-65 6-4-66	GT00 GT01 GT10 GT11 GT12 GT13	S,L,H S,L,H S,L,H S,L,H S,L,H S,L,H S,L,H	0.5 1 0.5 0.5 0.5 0.5 0.5	4-INPUT OR/NOR 6-4-INPUT OR/NOR DUAL 2-INPUT NOR DUAL 2-INPUT OR 2-INPUT NOR, 2-INPUT OR 3-INPUT, DUAL OUTPUT OR
6-4-67 6-4-68	GT1 4 GT1 5	S, L, H S, L, H		3-INPUT, DUAL OUTPUT NOR 2-TERM 3-INPUT OR-AND/NAND

(

)

6-i-6

1

GATES - BASIC LOGIC (CONTINUED)

page #	name	OPTIONS	cells	description
6-4-69	GT20			
6-4-70	Cm33	S,L,H	1 1	3-INFUT OR-AND/NAND, LOW-EN
6-4-71	6 0 00 7	S,L,H		3-INPUT NOR-OR/NOR
6-4-72				DUAL 2-INPUT AND
0 4 7 2 .	· G120	S,L,H	0.5	
6-4-73 +	0000		0 F	1 INPUT COMMON
6-4-74	G129	5, L, f	0.5	
6-4-75		S,L,H		DUAL 2-INFUT NAND
6-4-76	GT3 5	S,L,H	1	4-INPUT AND
6-4-77	GT37	S,L,H	1	4-WIDE 2-INFUT OR-AND/NAND
6-4-78	GT38	S,L,H		3-INFUT AND/NAND
6-4-79		5,L		DUAL 2-INFUT AND
6-4-80		S,L	0.5	DUAL 2-INFUT AND, COMMON INFUT
6-4-60	GT45	S,L	0.5	2-INPUT AND, 2-INPUT NAND
6-4-81 *	GT47	S, L, H	0.5	DUAL 2-INFUT OR-AND/NAND
6-4-82 *	GT48	S,L,H	0.5	3-INFUT AND/NAND
6-4-83			0.5	3-INPUT NOR DRIVER
6-4-84	GT51D	D	0.5	2-INPUT OR DRIVER
6-4-85 *			0.5	2-INPUT NAND DRIVER
6-4-86	GT54D		1	INVERTED SUPER DRIVER
6-4-87	GT55D	D	1	NON-INVERTING SUPER DRIVER
6-4-88	GT56D	D	0.5	2-INFUT OR/NOR DRIVER
6-4-89	GT60	S,L, H	1	8-INPUT OR/NOR
6-4-90	GT61	S,L,H	1	DUAL 3-INFUT NOR
6-4-91	GT62	S.L.H	1	DUAL 3-INPUT OR
6-4-92 *	GT64	S.L.H	1	V MACRO TO OTHER MACRO
				TRANSLATOR
6-4-93 *	GT66D	D	1	V MACRO TO OTHER MACRO
		-	-	TRANSLATOR - DRIVER
6-4-94 *	GT67V	v	1	OTHER MACRO TO V MACRO
6-4-95	GT86	S	ī	4-STAGE GATE DELAY:
	0100	D	*	2-STAGE DELAY
6-4-96	GT87D	D	1 .	STATIC DRIVER (LOW; HIGH)
6-4-98 *			ī	2-INPUT AND/NAND - FAST
6~4~99 *				2-INFUT OR/NOR - FAST
6-4-100	GT99	s		THERMAL DIODE
	~~~~	<b>₩</b>		

LATCHES

) Ĵ

page # name OPTIONS cells description  MULTIPLEXOR MACROS

page #	name	OPTIONS	cells	description
g=====================================	******			
6-4-111	MX00	S,L,H	1	2:1 MUX, GTD SEL, CPL
6-4-112	MXO1	S, L, H	1	2:1 MUX, GTD SEL, EN
6-4-113	MX03	S, L, H	1	2:1 MUX, GTD SEL, EN, YN
6-4-114 *	MX04	S,L,H	0.5	2:1 MUX, GTD SEL, CPL
6-4-116 *	MX04I	ם כ	0.5	DRIVER MUX
6-4-118	MX07	S,L,H	1	TRIPLE 2:1 MUX, CMN SEL
6-4-120	MX13	S, L, H	0.5	2:1 MUX
6-4-121 *	MX171	7 🗸	1	2:1 MUX - FAST
6-4-123	MX 21	S,L,H	1	4:1 MUX
6-4-124	MX22	S,L,H	1	4:1 MUX WITH LOW ENABLE, Y
6-4-126 *	MX25	S, L, H	1	4:1 MUX
6-4-128 *	MX26	S, L, H	1	4:1 MUX; LOW ENABLE

REGISTER

page #	name	OPTIONS	cells	description
==============	#265ee	*********		============================
6-4-130	REG00	S,L,H	4.5	4-BIT MUX WITH D F/F

### WIRE-OR COMPONENT MACROS

page #	name		description	_	
6-5-3 6-5-3 6-5-3 6-5-3	WIREOR WIREOR	202	2-INPUT WIRE OR 3-INPUT WIRE OR 4-INPUT WIRE-OR	E	
EXTRA POW	ER-GROUI	ND MAC	TROS ON 1/0 CELL		
page # name cells description					
6-5-4 6-5-5	ITFWR FIGND	1	EXTRA VCC - TTL OR TTLMIX EXTRA GROUND - TTL OR TTLMIX		
6-5-6	IEVCC	1	EXTRA ECL VCC - ECL OR MIX		

C

()

 $\bigcirc$ 

6-5-7	CHIP MACROS
	CHIP MACROS USE NO CELLS
6-5-9	Q5000TTTL
6-5-9	Q5000TECL10K
6-5-9	Q5000TECL100K
6-5-10	Q5000TMIX10K
6-5-10	Q5000TMIX100K
6-5-11	Q5000TTTL10K
6-5-11	Q5000TTTL100K
6-5-9	Q3500TTTL
6-5-9	Q3500TECL10K
6-5-9	Q3500TECL100K
6-5-10	Q3500TMIX10K
6-5-10	Q3500TMIX100K
6-5-11	Q3500TTTL10K
6-5-11	Q3500TTTL100K
6-5-9	Q1300TTTL
6-5-9	Q1300TECL10K
6-5-9	Q1300TECL100K
6-5-10	Q1300TMIX10K
6-5-10	Q1300TMIX100K
6-5-11	Q1300TTTL10K
6-5-11	Q1300TTTL100K
6-5-9	QM1600TTTL
6-5-9	QM1600TECL10K
6-5-9	QM1600TECL100K
6-5-10	QM1600TMIX10K
<b>6-5-1</b> 0	QM1600TMIX100K
6-5-11	QM1600TTTL10K
6-5-11	QM1600TTTL100K

#### MACRO NAMING CONVENTION- Q5000

THE EXPANSION OF A MACRO NAME IS GIVEN BELOW:

aa [a]nnb : 1 1 : : : : : : : ---- POWER/FANOUT: S - STANDARD (9 LOADS) 2 L - LOW POWER (4 LOADS) 2 : H - HIGH SPEED (9 LOADS) . : V - VERY FAST (9 or + LOADS) 2 . : 1 D - DRIVER (15/25 LOADS) (3-STATE DRIVERS - 8 LOADS) : : 1 . ----- CELL # (00-99) • ----- CELL TYPE: TWO - THREE LETTERS (THREE LETTERS FOR MSI MACROS) KEY: AD - ADDER ADD - MSI ADDER BB - MSI BUILDING BLOCK - AMCC USE ONLY BI - ECL INPUT BUFFERED LOGIC CPG - MSI CARRY LOOK-AHEAD GENERATOR CMP - MSI COMPARATOR CTR - MSI COUNTER =============================== DE - DECODER ECL input IE EX - EXOR ECL 10K OUTPUT OE . FF - F/FECL 100K OUTPUT OK FFF - MSI F/F ECL 10K Bidirec. UΕ GT - GENERAL GATES UK ECL 100K Bidirec. LA - LATCH IT TTL INPUT MX - MULTIPLEXOR, MUX OT TTL OUTPUT RAM - QM1600T RAM MACRO UT TTL Bidirec. REG - MSI REGISTER FOR TTL I/O MACROS: 00-39 = 100% TTL; OR MIX IN A +5V ONLY CIRCUIT 40-99 = MIX IN A DUAL POWER SUPPLY CIRCUIT FOR ECL I/O MACROS: LETTER DESIGNATION FOR ECL 10K AND ECL 100K ECL MACROS DO NOT VARY WITH I/O MODE

# Section 6–1: TTL Interface

()

)

6-1-2

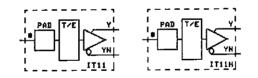
· · ·

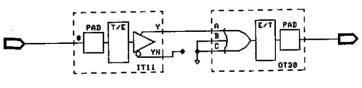
.

•

()

AMCC Q5000 MACRO SUMMARY - TTL LIB (804) FOR 100% TTL OR ECL/TTL MIXED MODE CIRCUITS; SINGLE +5V FOWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C


(


IT11	I/O cell TTL	INPUT WITH	BUFFER,	COMPL.	OUTPUTS
Tpd ++	PAD->Y PAD->Y	S 0.49 0.33	Ľ	H 0.33 0.23	ns ns
-	PAD->YN PAD->YN	0.26 0.11		0.22 0.24	ns ns
ICC		1.13		1.35	mA I/O
FAN-OU!	T LOAD LIMIT:	9		9	loads
k-FACT(	OR RISING FALLING	0.04 0.04		0.02 0.04	ns/LU ns/LU

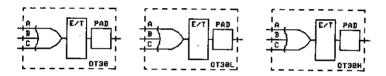
* INPUT PAD MUST BE TIED TO TOTEM-POLE TYPE TTL OUTPUTS OR TO A VOLTAGE WITH  $V_{\rm H}$  <  $V_{\rm CC}$  - 0.5

$$Y = PAD$$
 YN *

YN = PAD






TTL 1/0

AMCC Q5000 MACRO SUMMARY - TTL LIB (804) FOR 100% TTL OR ECL/TTL MIXED MODE CIRCUITS; SINGLE +5V POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C

OT30	I/O cell	TTL OUTPUT W	ITH 3-INE	UT OR BU	FFER
Tpd (A	., B, C->PAD ++ 	 S 4.21 2.95	L 4.23 3.74	H 4.13 2.45	ns ns
ICC		2.75	2.30	4.01	mA I/O

A, B, C CAN BE TIED TO GROUND

$$PAD = A + B + C$$



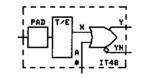
( )

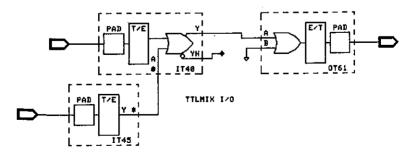
# Section 6-2: TTLMIX Interface

 $\bigcirc$ 

)

)


 $\bigcirc$ () AMCC Q5000 MACRO SUMMARY - TTL MIX (804) FOR TTL I/O IN STD ECL/TTL MIXED MODE CIRCUITS DUAL POWER SUPPLY: +5V AND -5.2VALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ 


IT40 I/O cell TTL	INPUT WITH	OR/NOR	BUFFER	
	8	L	H	
Tpd ++A->Y	0.86			ns
TpdA->Y	0.39			ns
Tpd ++PAD->Y	1.42			ns
TpdPAD->Y	0.78			ns
Tpd +-A->YN	0.56			ns
Tpd -+A->YN	0.63			ns
Tpd +-PAD->YN	1.12			ns
Tpd -+PAD->YN	1.02			ns
ICC	0.50			mA 1/0
IER	1.35			mA CORE
FAN-OUT LOAD LIMIT:	9			loads
<b>k-FACTOR RISING</b>	0.04			ns/LU
FALL ING	0.04			ns/LU

* A FROM IT45 OR GROUND

Y = PAD + A

 $YN = \overline{PAD} + \overline{A}$ 



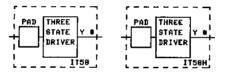


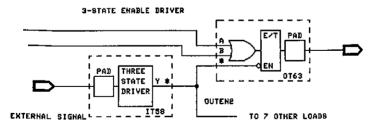
AMCC Q5000 MACRO SUMMARY - TTL MIX (804) FOR TTL 1/0 IN STD ECL/TTL MIXED MODE CIRCUITS DUAL POWER SUPPLY: +5V AND -5.2V ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C

IT45 1/0	cell TTL	INPUT -	UNBUFFERED		
Tpd ++PAD- TpdPAD-		S 0.56 0.39	L	H	ns ns
ICC		0.27			mA CORE
FAN-OUT LO	AD LIMIT:	1			loads
k-FACTOR	RISING FALLING	0.04 0.04			ns/LU ns/LU

* Y TO IT40 A INPUT ONLY

Y = PAD



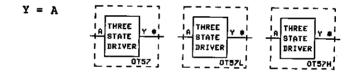


AMCC Q5000 MACRO SUMMARY - TTL MIX (804) FOR TTL 1/O IN STD ECL/TTL MIXED MODE CIRCUITS DUAL POWER SUPPLY: +5V AND -5.2VALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C

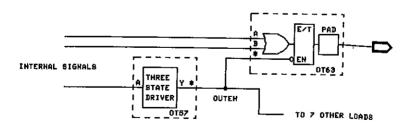
(

_____ IT58 I/O cell TTL 3-STATE ENABLE-DRIVER (EXTERNAL) S L н 0.67 0.08 Tpd ++PAD->Y лs Tpd -- PAD->Y 0.02 0.11 'nя ICC 0.72 2.70 mA I/O FAN-OUT LOAD LIMIT: 8 8 loads k-FACTOR RISING 0.04 0.02 ns/LU 0.04 FALLING 0.04 ns/LU

* Y TO OUTPUT ENABLE ON TTLMIX 3-STATE OR TTLMIX BIDIRECTIONAL MACROS







6-2-5

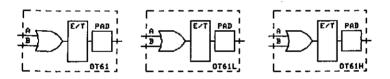
AMCC Q5000 MACRO SUMMARY - TTL MIX (804) FOR TTL I/O IN STD ECL/TTL MIXED MODE CIRCUITS DUAL POWER SUPPLY: +5V AND -5.2V ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

OT57 I	/O cell TTL	3-state	ENABLE-DI	IVER (II	NTERNAL)
Tpd ++A- TpdA-		S 1.09 1.64	L 2.10 1.64	H 0.46 2.01	ns ns
ICC HIGH ICC LOW IEE		2.30 1.67 0.23	2.07 0.99 0.23	3.87 2.88 0.23	mA I/O mA I/O mA CORE
FAN-OUT	LOAD LIMIT:	8	8	8	loads
k-FACTOR	RISING FALL ING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

* Y TO OUTPUT ENABLE ON TTLMIX 3-STATE OR TTLMIX BIDIRECTIONAL MACROS A CAN BE TIED TO GROUND






į)

AMCC Q5000 MACRO SUMMARY - TTL MIX (804) FOR TTL I/O IN STD ECL/TTL MIXED MODE CIRCUITS DUAL POWER SUPPLY: +5V AND -5.2V ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

OT61 I/O cell TTL OU	TPUT WIT	H 2-INPU	T OR BUF	FER
	s	L	н	- <b> </b>
(1 IN PUT CHANGING)				
Tpd ++A, B->PAD	4.34	4.37	3.73	ns
A, B->PAD	2.51	3.41	1.97	ns
(2 INPUTS CHANGING)				
++	3.66	4.35	4.29	ns
	2.02	3.49	2.59	ns
7.00				
ICC IEE	2.70	2.25	4.14	mA I/O
100	0.23	0.15	0.34	mA CORE

A, B CAN BE TIED TO GROUND

PAD = A + B



#### 6-2-7

AMCC Q5000 MACRO SUMMARY - TTL MIX (804) FOR TTL I/O IN STD ECL/TTL MIXED MODE CIRCUITS DUAL POWER SUPPLY: +5V AND -5.2V ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C

(

()

OT63	1/0	cell	TTL	3-STATE	OUTPUT,	2-INPUT	OR, EN
				s	L		
Tnd +	+ (A->I	(מגס		6.35	6.04	н 5.07	
	-(A->I			2.12	3.06		ns
	+(B->I			6.23	5.93		ns
	-(B->I			2.12	3.07	5.03	ns
		->PAD)		6.20		1.91	ns
трат	- (A, D-	-/PAD/		0.20	5.93	5.00	ns
Tpd ()		101					
	A+B≡O			4.31	E 31		
4	ATD=0				5.31	3.30	ns
	A+B=1			3.89	4.80	2.92	ns
4	M+D-1			5.21	6.52	4.39	ns
		HZ		1.24	0.80	1.56	ns
ICC				2 . 4	0.61		<b>-</b>
				3.24			
IEB				0.23	0.15	0.34	mA CORE
<pre>* EN FROM TTLMIX 3-STATE ENABLE DRIVER (INTERNAL OR EXTERNAL) EN MUST BE DRIVEN BY A MACRO SIGNAL NAME FOR ENABLE INPUT MUST APPEAR IN THE SIMULATION FORMAT A, B CAN BE TIED TO GROUND PAD = (A+B).EN (FOR EN LOW); PAD = HIGH-Z (FOR EN HIGH)</pre>							
	EN	A+B	I	PAD			
	0 0 1	1 0 X	     	l O HIGH-Z			

JT66 I/O cell TTL P	IDIRECTI			
		L		
(1 INPUT CHANGING)				
Pd ++A->PAD A->PAD ++B->PAD B->PAD	6.01	5.74	5.34	ns
A->PAD	2.38	3.01	1.98	ns
++B->PAD	5.96	5.66	5.28	ns
(2 INPUTS CHANGING)	2.3/	3.01	1.96	ns
pd ++A,B->PAD	5 95	5.65	5 27	ns
A, B->PAD	2.43	3.07	2.01	ns
++PAD->Y	1.08	1.08	1.08	ns
++PAD->Y PAD->Y	1.11	1.08	1.11	ns
+-PAD->YN	1.03	1.03	1.03	ns
-+ PA D-> YN	1.51	1.51	1.51	ns
DO EN->PAD				
A+B=0 ZL	4.66	4.76	3.37	ns
LZ A+B=1 ZH	4.09	4.52 6.15	2.94	ns
	6.38	6.15	5.12	ns ·
HZ	1.32	1.02	1.59	ns
сс	3 74	3.11	5 36	mA I/O
EE		1.67		
	1.07	1.07	1.07	
AN-OUT LOAD LIMIT:	9	4	9	loads
-FACTOR RISING FALLING	0.04	0.04	0.04	ns/LU '
FALLING	0.04	0.04	0.04	ns/LU '

()

 $\overline{)}$ 

THE SIMULATION FORMAT A, B CAN BE TIED TO GROUND ** The input buffer is always an "S" option hence the constant k-factor

AMCC Q5000 MACRO SUMMARY - TTL MIX (804) FOR TTL I/O IN STD ECL/TTL MIXED MODE CIRCUITS DUAL POWER SUPPLY: +5V AND -5.2V ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES  $TA = 25 \circ C$ ____ UT66 I/O cell TTL BIDIRECTIONAL I/O, 2-INPUT OR BUFFER EN A B PAD I Y YN ----!--0 0 0 0 1 0 1 OUTPUT 0 х 1 1 1 1 0 OUTPUT 1 0 1 Х 1 0 1 OUTPUT 1 Х Х 1 1 0 1 INPUT 1 х х 0 1 0 1 INPUT 5 / T F /1 PAD PAD PAD EN ΕN ΕN T/E TZE 1 Тан NY1 I YN ____<u>U166H</u>I _ _ _ UT66L] UT66__ L _ _ ι_ TTLMIX BIDIRECTIONAL TTL DONE THE SAME HAY E/1 PAD THREE PAD BIDIEH1 STATE Y ι. ŧ DRIVER 1128 **YN** _ _ _ _ <u>_</u> <u>_ _ UT66</u>_ ] TO 7 OTHER LOADS

()

# Section 6-3: ECL Interface

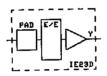
)

)

)

 $\left( \right)$ 

(


(

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

IE23D I/O cell ECL BU	IFFERED INPUT, SUPER-DRIV	ER 
*****************************	DRIVER	
Tpd ++ PAD->Y	0.28	ns
PAD->Y	0.22	ns
FRD-/1		
IEE	5.20	mA
FAN-OUT LOAD LIMIT:	25	loads
k-FACTOR RISING FALLING	0.01 0.01	ns/LU ns/LU

OUTPUT CANNOT BE WIRE-ORED FAN-OUT LOAD LIMIT IS NOT DERATED

Y = PAD



(804)

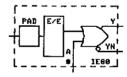
FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ 

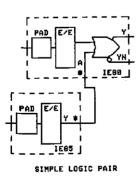
IE25 2 I/O cells DIFFERENTIAL ECL BUFFERED INPUT -----S г Н Tpd A, AN->Y, YN 0.37 ns IEE 1.35 πA FAN-OUT LOAD LIMIT: 9 loada **k-FACTOR** RISING 0.040 ns/LU FALLING 0.040 ns/Lu MAXIMUM FREQUENCY 360 MHz OF OPERATION (fMAX)

* BOTH INPUTS MUST BE USED

Note: Use dual-cell macros such as IE25 for high-speed ECL input up to 360MHz. Use V macros for speeds up to 600MHz.

PAD1 = APAD2 = ANPADI E/E PAD1 PAD2 Α AN J Y YN Û PAD2 E/E 0 ſ х х Ô 1 1 0 1 1 0 1 0 L 1 1 х 1 Х IE25 ( FOR DIFFERENTIAL


FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ 


IE80 I/O	cell ECL	INPUT WITH	OR/NOR	BUFFER	
		S	L	H	
Tpd ++A->Y		0.40			ns
A->Y		0.31			ns
+~A->Y	'N	0.31			ns
-+A->Y	'N	0.66			ns
++PAD-	->Y	0.45			ns
PAD-	->Y	0.36			ns
+-PAD-	·>YN	0.36			ns
- + PA D-	->YN	0.71			ns
IEB		1.35			mA
FAN-OUT LO	AD LIMIT:	9			loads
k-FACTOR	RISING	0.040			ns/LU
	FALLING	0.040			ns/LU

* A FROM UNBUFFERED ECL INPUT OR CAN BE TIED TO GROUND

Y = PAD + A

 $YN = \overline{PAD} + \overline{A}$ 



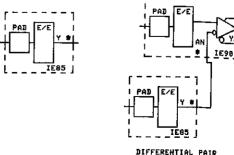


(804)

(804)

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

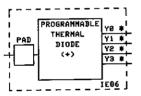
IE85	I/O cell	ECL	INPUT	COMPENSATOR	
Tpd PAD->Y		S 0.05	L	н	ns
IEE		0.00			mA
FAN-OUT LO	AD LIMIT:	8			loads
k-FACTOR	RISING FALLING	0.0 0.0			ns/LU ns/LU

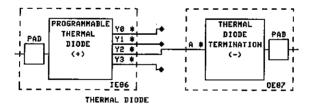

* Y TO BUFFERED-LOGIC MACROS; BUFFERED INPUT MACROS Y FAN-OUT LOAD IS NOT DERATED

Y = PAD

NOTE: IE85 contains a series resistor between the pad and the transistor base connection of the macro used in a differential pair while the pairing macro does not contain this resistor. Therefore, for high speed applications, it may be necessary to skew the inputs to obtain optimum performance.

Macros IE88D-IE89D are balanced and should be used as a differential pair for high-speed applications. High-speed is defined as anything over 100MHz. THE maximum frequency for the pair is 180MHz with placement considerations. Use dual-cell differentials such as IE25 for speeds up to 360MHz and the V macros such as IE99V for speeds up to 600MHz (Commercial).


Any differential input pair will require external signal adjustment to account for package skew, etc. Refer to the Design Methodology section for rules regarding ECL differential I/O.

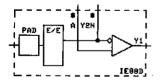


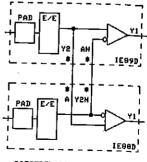

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

IE86	I/O cell	PROG	RAMMABLE	THERMAL	DIODE
Tpd PAD->Y		s 0.10	L	H	ns
IEE		0.00			mA
FAN-OUT LO	AD LIMIT:	8			loads
k-FACTOR	RISING FALLING	0.04			ns/LU ns/LU

MUST BE USED WITH OE87







#### (804)

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

IE88D	I/O cell	EC	L DIFFERENTIAL	SUPER DR	IVER
			DRIVER		
Tpd PA	D->Y2N		0.05		ns
Tpd -+ PA			0.18		
+- PA			0.15		ns
	- <b>-</b> -				ns
Tpd ++ A			0.13		ns
A-:	>Y1		0.10		ns
IEE			4.91		mA
FAN-OUT L	DAD LIMIT:	¥1	25		loads
		Y2N	7		loads
	<b>D</b> TO TWO				
k-FACTOR	RISING		0.00		ns/LU
	FALLING	Y2N	0.00		ns/LU
	<b>RIS ING</b>	¥1	0.01		ns/LU
	FALLING	Υl	0.01		ns/LU
MAXIMUM FREQUENCY OF OPERATION (fMAX)			180		MH z

* A FROM UNBUFFERED ECL INPUT A CANNOT BE GROUNDED IE88D AND COMPANION MACRO MUST BE ADJACENT Y1 TO BUFFERED LOGIC MACROS, BUFFERED INPUT MACROS Y1,Y2N - FAN-OUT LOAD LIMIT IS NOT DERATED OUTPUT CANNOT BE WIRE-ORED



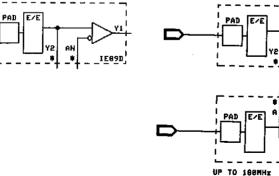


()

DIFFERENTIAL PAIR

(804)

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25°C


IE88D I/O cell ECL DIFFERENTIAL SUPER DRIVER

Note: Use dual-cell macros such as IE25 for high-speed ECL input up to 360MHz. Use V macros for speeds up to 600MHz.

PAD	A	1	¥1		Y2N
0 0 1 1	0 1 0 1	     	1 0	(UNKNOWN) (UNKNOWN)	0 0 1 1

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C

IE89D	I/O cell	EC	L DIFFERENTIAL	SUPER DRIVER
			DRIVER	ہر سے بین چپا تو نک کا جر سا نے نے تو ہو جو سا نے ت
Tpđ	PAD->Y2		0.05	ns
	PAD->Yl			ns
	PAD->Y1		0.14	ns
	AN->Y1		0.13	ns
+	AN->Yl		0.09	ns
IEE			4.91	mA
FAN-OUT	LOAD LIMIT:	¥l	25	loads
		¥2	7	loads
k-FACTO	R RISING	¥2	0.00	ns/LU
	FALLING	¥2	0.00	ns/LU
	RISING	Yl	0.01	ns/LU
	FALL ING			ns/LU
MAXIMUM OF OPE (fm)			180	MHz
AN CAL IE89D Y2 TO	BUFFERED LO	NDED ON MA GIC I	L INPUT ACRO MUST BE AD MACROS, BUFFERE LIMIT IS NOT DE	D INPUT MACROS
				FFERENTIAL INPUT



1

(804)

АH

4

- -

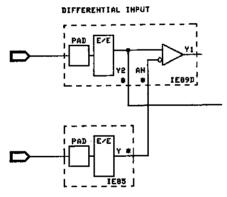
YEN

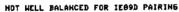
ź

IE09D

_ _1<u>E00</u>p

1


,


FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oC

IE89D I/O cell ECL DIFFERENTIAL SUPER DRIVER

Note: Use dual-cell macros such as IE25 for high-speed ECL input up to 360MHz. Use V macros for speeds up to 600MHz.

PAD	AN	1	¥1		¥2
0 0 1	0 1 0	     	ILLEGAL 0 1	(UNKNOWN)	0 0 1
1	i 	 	ILLEGAL	(UNKNOWN)	1





(804)

(804)

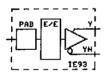
(

()

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

IE90 I/O	Cell	ECL D			COMPL.		
			S	L	н		
Tpd ++ PAD	)->¥ )->¥		0.22	2		ns	
PAL	->1		0.23	Ļ		ns	
Tpd +- PAD						ns	
-+ PAD	)->YN		0.22			ns	
Tpd +- AN-	·>¥		0.18	1		ns	
+ AN-	>¥<		0.17			ns	
Tpd ++ AN-	<b>NN</b>		0 17	,			
	>YN		0.18			ns ns	
IEE			1.35	I		mA	
FAN-OUT LO	AD LIMIT	:	9			loads	
k-FACTOR			0.04			ns/LU	
	FALL ING		0.04			ns/LU	
MAXIMUM FR OF OPERAT (fMAX)			180			MH z	
* AN FROM UNBUFFERED ECL INPUT (MUST BE DRIVEN DIFFERENTIALLY) AN CANNOT BE GROUNDED IE90 AND COMPANION MACRO SHOULD BE ADJACENT							
Note: Use dual-cell macros such as IE25 for high-speed							

Note: Use dual-cell macros such as IE25 for high-speed ECL input up to 360MHz. Use V macros for speeds up to 600MHz.


Y	= AN	PAD			YN = AN.PAD	
PAD	AN		¥	YN		
0	0	ļ		GAL	(UNKNOWN)	
i 1	0	Ì	1 ILLE	0 GAL	(UNKNOWN)	└───── [●] ↓ <u>IE9</u> 8_]

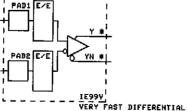
FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oC

IE93	I/O cell	ECL	BUFFERED	INPUT,	COMPL.	OUTPUTS
			S	L	Н	
Tpd ++ I	PAD->Y		0.36			ns
I	PAD->Y		0.24			ns
Tpd +- F	AD->YN		0.33			ns
-+ F	AD->YN		0.24			ns
_						
IEE			1.35			mA
FAN-OUT LOAD LIMIT:			9			loads
k-FACTOR			0.040			ns/LU
	FALL ING		0.040			ns/LU

Y = PAD

 $YN = \overline{PAD}$ 




(804)

C

 $( \cdot )$ 

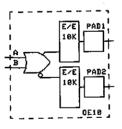
FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oC

1E99V 2 1/	O CELLS	VERY ECL,	HI-SPEED, HALF-SWING	DIFFERENTIAL	
			V		
Tpd ++ PAD	, PAD2->Y	, YN	0.22		ns –
THE PADE	,PAD2->Y ,PAD2->Y	, YN	0.22		ns
PADI	, PAD2->1	, IN VN	0.22 0.22		ns
INDI	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 11	0.22		ns
IEE			2.90		mA
FAN-OUT LOA	D LIMIT:		9		loads
k-FACTOR	RISING		0.020		ns/LU
	FALLING		0.020		ns/LU
	_				
MAXIMUM FRE			600		MHZ COM
OF OPERATI (fmax)	ON		450		MHZ MIL
(IMAK)					
*Y,YN OUTP *Y,YN MUST *Y,YN CANN *Y,YN CANN	2 MUST B UTS ARE DRIVE A OT BE WI	E DIFF 1/2 SW DIFFE RE-ORE WERED-	ERENTIALLY ING (250mV RENTIAL IN D	)	
0	1	1 0	1		
Ō		UND			
1	0	1	0		
_	1	UND	UND		
1					
1	PAD1 EZE		 		



(804)

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC


OEl0 2 I/O cells	ECL DIFFERENTIAL I	DRIVER WITH OR GATE
Tpd ++ A, B->PAD1 A, B->PAD1 Tpd +- A, B->PAD2 -+ A, B->PAD2	0.46 0.46 0.52 0.42	ns ns ns ns
IEE	5.13	mA OELO
MAXIMUM FREQUENCY OF OPERATION (£MAX)	360	MHz

* A, B - AT LEAST ONE MUST BE DRIVEN BY A MACRO

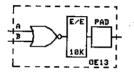
Note: Use dual-cell macros such as OE10 for high-speed ECL output up to 360MHz. Use V macros for speeds up to 600MHz.

PAD1 = A + B

 $PAD2 = \overline{A} + \overline{B}$ 



FOR HIGH-SPEED APPLICATIONS


(804)

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

OE13	2 I/O cells	ECL 25 OHM NOR OUTPUT	
-	A,B->PAD A,B->PAD	0.45 0.77	ns ns
IEE		13.60	mA

* A, B - AT LEAST ONE MUST BE DRIVEN BY A MACRO

$$PAD = A + B$$



(

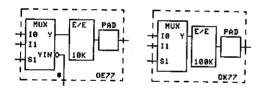
)

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oC

0x77	1/0	cell	2:1	MUX ECL	10K OUTH	UT 	
				0E77	OK77	(1f	different
Tpd	++ 10	->PAD		0.55			ns
		->PAD		0.54			ns
Ppd 🛛	+- I0	->YIN		0.21			ns
	-+ IC	->YIN		0.54			ns
pd	++ Il	->PAD		0.55			ns
_		->PAD		0.58			ns
pđ	+- IJ	>YIN		0.21			ns
		->YIN		0.60			ns
pđ		->PAD		0.67			ns
		->PAD		0.71			ns
		->PAD		0.62			ns
_		->PAD		0.72			ns
pd		->YIN		0.39			ns
		->YIN		0.72			ns
		->YIN		0.62			ns
_		->YIN		0.40			ns
pd		,I1->PAD			0.41		ns
_		,Il->PAD			0.57		ns
pđ		(->PAD			0.52		nø
		(->PAD			0.57		ns
		->PAD			0.58		ns
	si	->PAD			0.69		ns
EE				5.80	4.05		mA
'AN-C	ОТ ГО	AD LIMIT:	YIN	9			
-FAC	TOR	RISING	YIN	0.040			ns/LU
		FALL ING		0.040			ns/LU

10, 11, S - EACH MUST BE DRIVEN BY A MACRO

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC


Ox77 I/O cell 2:1 MUX ECL 10K OUTPUT

 $PAD = 10.\overline{13} + 11.51$ 

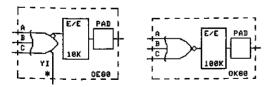
YIN = PAD

S	11	10	1	PAD	YIN	(YIN	ON	0E77	ONLY)
0 0 1 X X X X X	X X 0 1 0 0 1 1	0 1 X X 0 1 0 1			1 0 1 0 1 NOWN NOWN 0	-			
 						•			

OE77: ECL 10K OK77: ECL 100K



(804)


FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oC

Cx80 I/O cell ECL OU	TPUT WITH	3-INPUT N	NOR BUFFER
	OE80	0K80	
Tpd +- A,B,C->PAD	0.47		ns
-+ A, B, C->PAD	0.48		ns
Tpd ++ A, B, C->YI	0.44		ns
A, B, C->YI	0.17		ns
Ipd +- A,B,C->PAD		0.44	ns
<pre>Fpd -+ (separately)</pre>		0.42	ns
Fpd +- A, B, C->PAD		0.37	ns
Ipd -+ (together)		0.45	ns
IEE	5.58	5.13	mA
FAN-OUT LOAD LIMIT: YI	9	9	loads
K-FACTOR RISING	0.04	0.04	ns/Ll
FALLING	0.04	0.04	ns/Li

* YI TO INTERNAL LOGIC - FROM OE80 ONLY EITHER A, B OR C MUST BE DRIVEN BY A MACRO

 $PAD = \overline{A} + \overline{B} + \overline{C} = \overline{A} \overline{B} \overline{C}$  YI = A + B + C

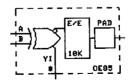
OE80: ECL 10K OK80: ECL 100K



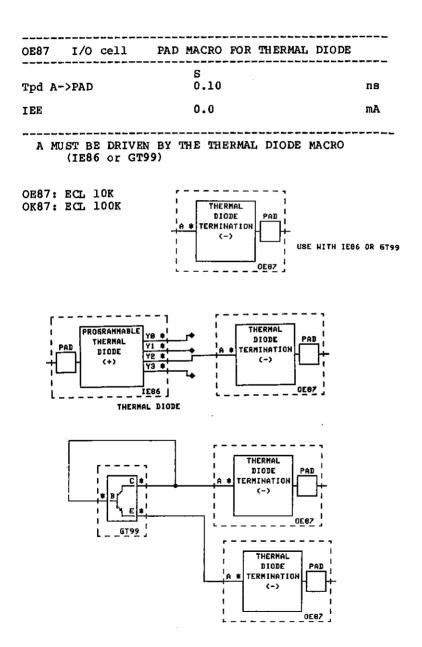
( )

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ 

Ox81 I/O cell ECL	OUTPUT WITH	3-INPUT OR	BUFFER
	OE81	OK81	
Tpd ++ A, B, C->PAD	0.53	0.34	ns
A, B, C->PAD	0.44	0.47	ns
Tpd +- A, B, C->YIN	0.20		ΠS
-+ A, B, C->YIN	0.41		ns
IEE	5.58	3.83	mA
FAN-OUT LOAD LIMIT: YIN	9	9	loads
k-FACTOR RISING		0.04	ns/LU
FALLING	0.04	0.04	ns/LU
EITHER A, B OR C MUST PAD = A + B + C			ā ē
OE81: ECL 10K OK81: ECL 100K			
L VIN 1 VIN 1 VIN 1 VIN 1 DEB1 1 L 0EB1 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1		DIFFE	RENTIAL
[ 4 월 구 월 구 10 구 10 구 10 구 10 구 10 구 10 구 10 구 10	GIGD J		


FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

OE85		I/O cell	ECL	10K OUTPUT EXNOR	
				S	
Tpd	++ .	A->YI		0.46	ns
_	,	A->YI		0.29	ns
	+	A->YI		0.20	ns
	-+ .	A->YI		0.66	ns
Tpd	++ ]	B->YI		0.56	ns
	1	B->YI		0.39	ns
	+- 1	B->YI		0.34	ns
	-+ ]	B->YI		0.69	ns
Tpd	++ .	A->PAD		0.47	ns
	-+ .	A->PAD		0.65	ns
	++ )	A->PAD		0.52	ns
	,	A->PAD		0.64	ne
Tpd	+- ]	B->PAD		0.59	ns
	-+ ]	B->PAD		0.72	ns
	++ ]	B->PAD		0.65	ns
	]	B->PAD		0.67	ns
IEE				5.58	mA
FAN-O	UT L	DAD LIMIT:	YI	9	loads
k-FAC	TOR	RISING	YIN	0.040	ns/LU
		FALLING	YIN	0.040	ns/LU


* YI TO INTERNAL LOGIC - FROM OE85 ONLY A, B - EACH MUST BE DRIVEN BY A MACRO

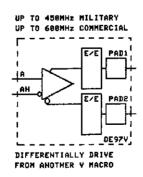
$$PAD = \overline{A} \oplus \overline{B}$$
  $YI = A \oplus B$ 

OE85: ECL 10K OK85: ECL 100K



FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C



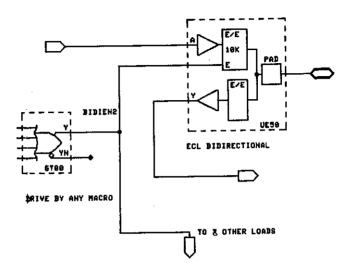

(

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA  $\simeq 25 \text{ oC}$ 

OE97V 2 I/O CELLS VERY DIFFI	HI-SPEED DIFF ERENTIAL OUTPU		
	v		
Tpd ++ A, AN->PAD1, PAD2	0.34	ns	
	0.34	ns	
-+ A, AN->PAD1, PAD2	0.34	ns	
A, AN->PAD1, PAD2	0.34	ns	
IEE	4.75	mA	OEnn
MAXIMUM FREQUENCY	600	MHz	СОМ
OF OPERATION (fmax)	450	MHz	MIL

# PAD1,PAD2 OUTPUTS ARE 1/2 SWING EXTERNAL ECL A,AN MUST BE DIFFERENTIALLY DRIVEN FROM ONE MACRO BOTH INPUTS MUST BE USED

A	AN	I	PAD1	PAD2	
0	1		0	1	
0	0		UND	UND	ILLEGAL
1	0	1	1	Û	
1	1	1	UND	UND	ILLEGAL



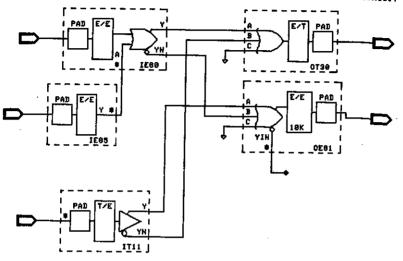

Ċ

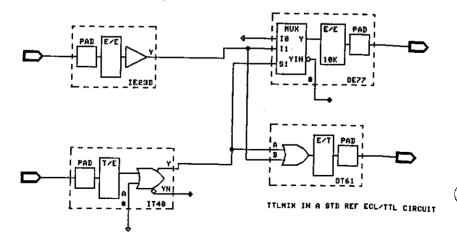
( )

FOR ANY ECL CIRCUITS; SINGLE OR DUAL POWER SUPPLY ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC

UE50	1/0	cell		ECL	BIDIRECTIONAL I/O WITH BUFFER
 ++ ++	A->I A->I E->I E->I PAD- PAD-	PAD PAD PAD ->Y			S 0.54 ns 0.59 ns 0.69 ns 0.65 ns 0.77 ns 0.50 ns
IEE FAN-OU	T LO	AD LI	MIT:	Y	5.40 mA 9 loads
k-FACT(	OR				0.040 ns/LU 0.040 ns/LU
EN AB.	LE FI LE SI	ROM A IGNAL	NY II NAMI UST I	NTERI 3 MU 3 E DI	NAL SIGNAL ST APPEAR IN SIMULATION FORMAT RIVEN BY A MACRO
	Е	A	PAD	Y	
_	1 1 0 0	0 1 X X	0 1 0 1	0   1   0   1	OUTPUT MODE INPUT MODE
UE50: : UK50: :	ECL :	L O K L O O K	not	rel	eased




6-3-25


1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -

TL IN A +5V REF ECL/TTL CIRCUIT

(

(





# Section 6-4: Logic Macros

 $\bigcirc$ 

 $\supset$ 

)



.

# AMCC Q5000 MACRO SUMMARY - ADxx

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL OR +5V REF ECL PATH, ELSE I = IEE

(804)

	1-BIT FULL	ADDER		
	S	L	Н	
Fpd ++ A->S	0.87	0.77	0.57	ns
+- A->S	1.04	0.83	0.64	ns
-+ A->S	0.77	0.95	0.54	ns
A->S	0.76	0.82	0.49	ns
"pd ++ B->S	1.13	1.02	0.74	ns
- +- B->S	1.22	1.01	0.81	ns
-+ B->S	0.96	1.11	0.63	ns
B->S	0.94	1.01	0.62	ns
'pd ++ CI->S	1.04	0.89	0.40	ns
- +- CI->s	0.56	0.43	0.34	ns
-+ CI->S	0.39	0.47	0.25	ns
CI->S	0.43		0.33	ns
'pd ++ CI->CO	0.68	3 0.61	0.39	ns
CI->CO	0.48		0.33	ns
'pd ++ A->CO	0.85		0.51	ns
A->CO	0.73		0.47	ns
'pd ++ B->CO	1.06	i 0.97	0.72	ns
B->CO	0.95	5 1.00	0.62	ns
	1.62	2 1.26	2.52	mA
AN-OUT LOAD LIM	LT: 9	4	9	loads
-FACTOR RISING	G 0.04	0.04	0.02	ns/LU
FALL IN	NG 0.04	4 0.08	0.04	ns/LU
CI COUNTS AS 2	F BE DRIVEN	B COUNT AS BY A MACRO D = A B + (	)	
$S = A \Theta I$ $A B CI   S$	s со г			<u></u> 1
$S = A \oplus H$ $A = CI + S$ $0 = 0 + 0$	5 CO [ 0 0		ADD	
$S = A \oplus B$ A = CI + S 0 = 0 + I 0 = 0 + I 0 = 0 + I	5 CO [ 0 0   1 0 +	⊣^ 。└└ →		<u></u> 1
$S = A \oplus B$ $A = CI + S$ $0 = 0 + 1$ $0 = 0 + 1$ $0 = 1 + 1$	5 CO 0 0 1 1 0 + 1 0 +			
$S = A \oplus B$ $A = CI + S$ $0 = 0 + 1 + 2$ $0 = 0 + 1 + 2$ $0 = 1 + 1 + 2$ $0 = 1 + 1 + 1$	5 CO [ 0 0 4 1 0 4 1 0 4 1 0 4 0 1		ADD 1 A B 8 CO	
$S = A \oplus B$ $A = CI + S$ $0 = 0 + I$ $0 = 0 + I$ $0 = 1 + I$ $0 = 1 + I$ $0 = 1 + I$ $1 = 0 + I$	5 CO 1 0 1 1 0 4 1 0 4 1 0 4 1 0 4 1 0 4		ADD A B B CO CO CO	
$S = A \oplus H$ $A = CI + S$ $0 = 0 = 0 + 1$ $0 = 0 + 1 = 1$ $0 = 1 = 0 + 1$ $0 = 1 = 0 + 1$ $1 = 0 = 0 + 1$ $1 = 0 = 1 + 1$	5 CO 1 0 4 1 0 4 1 0 4 1 0 4 0 1 4 0 1 4		ADD 1 A B 8 CO	
$S = A \oplus H$ $A = CI + S$ $0 = 0 + 1 + 2$ $0 = 0 + 1 + 2$ $0 = 1 + 1 + 2$ $0 = 1 + 1 + 2$ $0 = 1 + 1 + 2$ $1 = 0 + 1 + 2$ $1 = 0 + 1 + 2$ $1 = 0 + 1 + 2$ $1 = 0 + 1 + 2$ $1 = 0 + 2$	5 CO 1 0 1 1 0 4 1 0 4 1 0 4 1 0 4 1 0 4		ADD A B B CO CO CO	

AMCC (	25000	MACRO	SUMMARY		ADxx
--------	-------	-------	---------	--	------

()

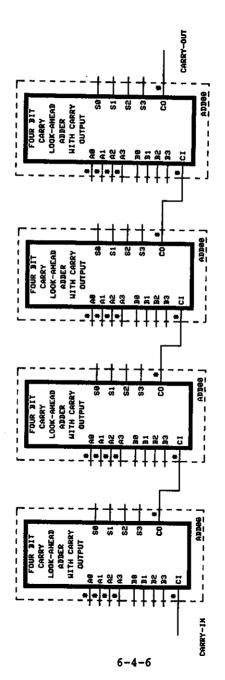
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

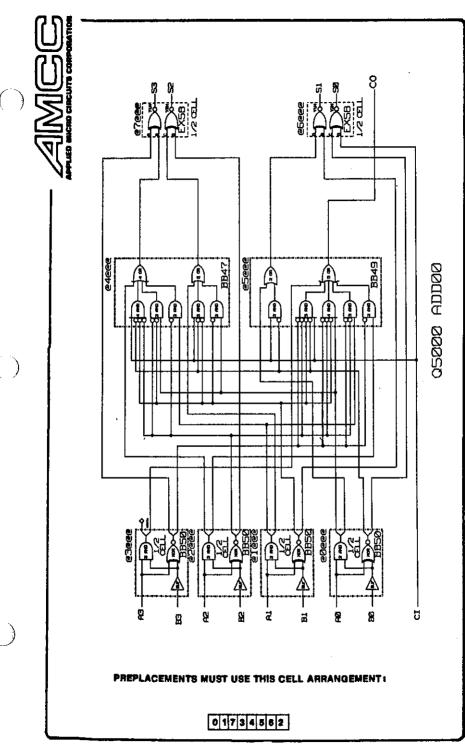
ADD00 5 L cel	ls 4-BI	F CARRY I WITH CA	LOOK-AHEA ARRY OUTI	AD ADDER
+- A1, B1->S1 Ai, Bi->S1 Trd ++ Ai, Bi->C0 -+ Ai, Bi->C0 +- Ai, Bi->C0 Ai, Bi->C0 Trd ++ CI->C0 CI->C0 Trd ++ CI->S1 Trd ++ CI->S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1 S1	2.27 2.54 2.21 2.08 1.75 2.04 1.71 1.54 1.03 1.68 1.45 1.43	2.00 2.88 2.36 2.20 1.68 2.01 1.49 1.40 1.40	1.48 1.84 1.74 1.48 1.38 1.20 1.10 0.81 0.78	ns ns ns ns ns ns ns ns ns ns ns ns ns n
i= 0,1,2,3				
I	12.51	10.35	18.36	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
INTERCONNECT PINS:	40	40	40	internal
k-FACTOR RISING FALLING	0.040	0.040 0.080	0.020 0.040	ns/LU ns/LU
<ul> <li>CI COUNTS AS 5 LOADS</li> <li>ALL Ai INPUTS COUNT B0, B1, B2, B3 - EAC</li> <li>OUTPUT CO CANNOT BE</li> </ul>	AS 2 LOA H MUST B	E DRIVEN	BY A MAG	CRO

ADD00 is a Four-bit semi-fast carry look-ahead adder with carry output designed for use in a ripple-carry configuration. It can be cascaded by attaching the CO output of one stage to the CI input of the next stage. The main advantage of this adder over ADD02 is a hardware savings if speed is not the critical parameter. A 16-bit adder requires 20 L cells.

AMCC Q5000 MACRO SUMMARY - ADxx (804)
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES
TA = 250C I = ICC FOR 100% TTL, ELSE I = IEE
·
ADD00 5 L cells 4-BIT CARRY LOOK-AHEAD ADDE WITH CARRY OUTPUT
$P0 = A0 \oplus B0$ $S0 = \overline{P0} \oplus \overline{C1}$
$P1 = A1 \oplus B1$ $S1 = \overline{P1} \oplus \overline{C1}$
$P2 = A2 \oplus B2$ $S2 = \overline{P2} \oplus \overline{CI}$
P3 = A3 ⊕ B3 S3 = P3 ⊕ CI
$GO = AO \cdot BO$
G1 = A1. $B1G2 = A2$ . $B2$
$G3 = A3 \cdot B3$
$C1 = G0 + (\overrightarrow{PO} + \overrightarrow{CT})$
$C2 = G1 + (\overrightarrow{P1} + \overrightarrow{G0}) + (\overrightarrow{P1} + \overrightarrow{P0} + \overrightarrow{C1})$
$C3 = G2 + (\overrightarrow{P2} + \overrightarrow{G1}) + (\overrightarrow{P2} + \overrightarrow{P1} + \overrightarrow{G0}) + (\overrightarrow{P2} + \overrightarrow{P1} + \overrightarrow{P0} + \overrightarrow{C1})$
$C4 = G3 + (\overrightarrow{p3} + \overrightarrow{c2}) + (\overrightarrow{p3} + \overrightarrow{p2} + \overrightarrow{c1}) + (\overrightarrow{p3} + \overrightarrow{p2} + \overrightarrow{p1} + \overrightarrow{c2})$
+ ( <u>P3</u> + <u>P2</u> + <u>P1</u> + <u>P0</u> + <u>C1</u> )
FOUR BIT I FOUR BIT FOUR BIT
LOOK-AHEAD I I LOOK-AHEAD I I LOOK-AHEAD I
HUDER ADDER
'#         OUTPUT         I         OUTPUT         I         OUTPUT         I         OUTPUT         I         OUTPUT         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I         I
$\begin{array}{c} \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{S} \\ \mathbf{S} \\ \mathbf{S} \\ \mathbf{S} \\ \mathbf{A} \\ \mathbf{A} \\ \mathbf{S} \\ $
+ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
ADD00ADD00LjADD00Hj

()


()


16-BIT RIPPLE-CARRY ADDER

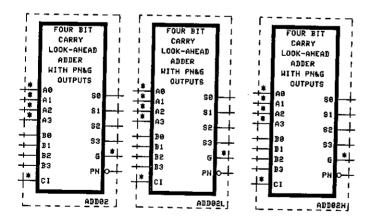
)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA  $\approx 25 \text{ oC}$ 

I = ICC FOR 100% TTL, ELSE I = IEE






I = ICC FOR 100% TTL, ELSE I = IEE

ADD02	5 L cells	4-BI G AN	T CARRY D PN OU	LOOK-AH	EAD ADDEI	R WITH
ALL All CI->	Ai,Bi->ALL Ai,Bi->PN Ai,Bi->G >ALL S 0,1,2,3	8	S 2.56 1.90 2.17 1.47	L 2.63 1.84 1.90 1.46	H 2.08 1.12 1.21 0.93	ns ns ns ns
I			12.87	10.53	18.72	πA
FAN-OUT	LOAD LIMIT:		9	4	9	loads
INTERCON	NECT PINS:		40	40	40	internal
k-FACTOR	RISING FALLING		0.040 0.040	0.040 0.080	0.020 0.040	ns/LU ns/LU

* CI COUNTS AS 4 LOADS

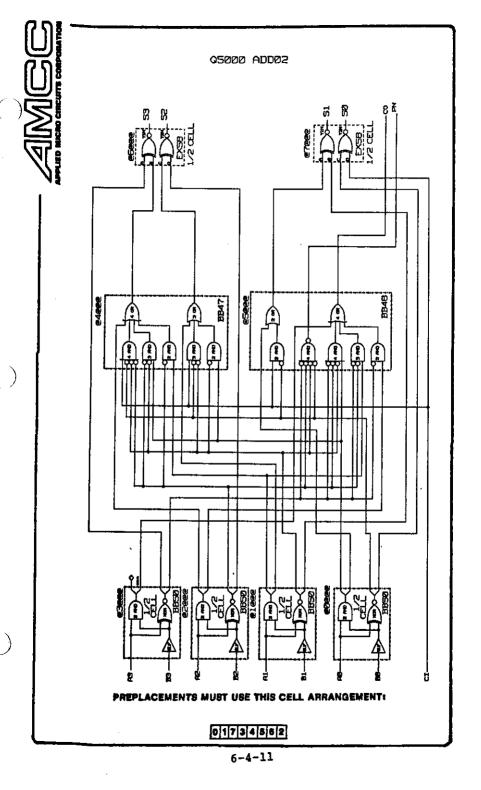
* ALL AI INPUTS COUNT AS 2 LOADS EACH

B0, B1, B2, B3 - EACH MUST BE DRIVEN BY A MACRO * OUTPUT G CANNOT BE WIRE-ORED



AMCC Q5000 MACRO SUMMARY - ADxx (804)
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA $= 25$ oc
I = ICC FOR 100% TTL, ELSE I = IEE
ADD02 5 L cells 4-BIT CARRY LOOK-AHEAD ADDER WITH G AND PN OUTPUTS
The ADD02 is a four-bit fast carry look-ahead adder with negated propagate (PN) and generate (G) outputs. These outputs feed inputs on the carry look-ahead generator (CPC02)
YMAYA/. CPUUZ CAN NANGLA tha DN and C incuta from a
16-bit carry-look-ahead adder. It is factor than a
16-bit ripple-carry adder but requires more L cells. A 16-bit carry look-ahead adder requires 24 L cells.
$P0 = A0 \oplus B0$ $S0 = \overline{P0} \oplus \overline{CI}$
$P1 \Rightarrow A1 \oplus B1$ $S1 \Rightarrow \overline{P1} \oplus \overline{C1}$
$P2 = A2 \oplus B2 \qquad S2 = \overline{P2} \oplus \overline{CI}$
P3 = A3 0 B3 S3 = 53 0 CT
GO = AO . BO G1 = A1 . B1
G2 = A2 . $B2G3 = A3$ . $B3$
$C1 = G0 + (\vec{PO} + \vec{CT})$
$C2 = G1 + (\overline{P1} + \overline{G0}) + (\overline{P1} + \overline{P0} + \overline{CT})$
$C3 = G2 + (\overrightarrow{P2} + \overrightarrow{G1}) + (\overrightarrow{P2} + \overrightarrow{P1} + \overrightarrow{G0}) + (\overrightarrow{P2} + \overrightarrow{P1} + \overrightarrow{P0} + \overrightarrow{C1})$
$C4 = C3 + (\overrightarrow{p3} + \overrightarrow{c2}) + (\overrightarrow{p3} + \overrightarrow{p2} + \overrightarrow{c1}) + (\overrightarrow{p3} + \overrightarrow{p2} + \overrightarrow{p1} + \overrightarrow{c0})$
+ $(\overline{P3} + \overline{P2} + \overline{P1} + \overline{P0} + \overline{CT})$
$G = G3 + (\overline{p3} + \overline{G2}) + (\overline{p3} + \overline{p2} + \overline{G1}) + (\overline{p3} + \overline{p2} + \overline{p1} + \overline{G0})$
$\mathbf{PN} = \mathbf{\overline{P3}} + \mathbf{\overline{P2}} + \mathbf{\overline{P1}} + \mathbf{\overline{P0}}$


()


)

)

)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE





AMCC Q5000 MACRO SUMMARY - CMPxx

(804)

(

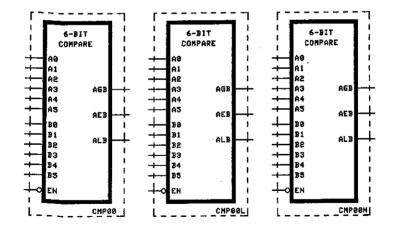
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

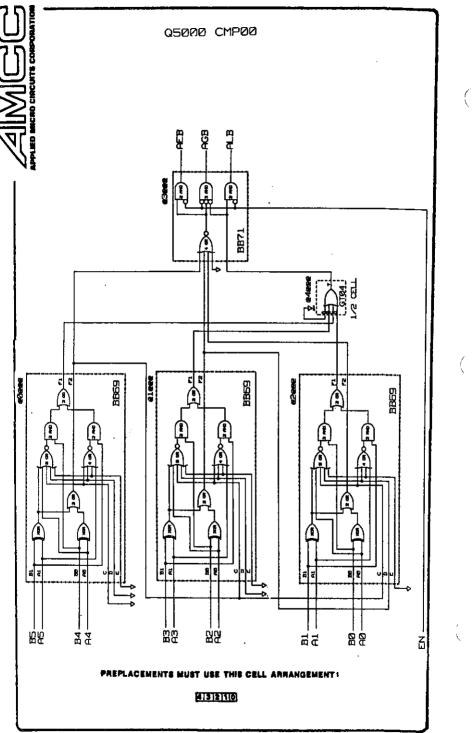
And gen gen ber an de der auf der Ber									
CMP00 4.5	L cells	6-BIT	COMP	ARAT	OR W	ITH	LOW	ENAB	LĒ
			S	$\mathbf{L}$			H		
Tpd ++A0-5		2			.86		1.99	n	8
+-A0-5		2	.48	2			1.89	n	8
A0-5	·		.47		.61		1.87	n	8
-+A0-5			.85		.77		1.96	n	6
Tpd ++B0-5		2		2			1.84	n	6
+-B0-5			.29	2	.42		1.74	n	8
B0-5			.23	2	.37		1.69	n	
-+B0-5	-	2		2	.65		1.81	n	-
Tpd ++A0-5		2	.65	2	.86		1.92	n	-
+-A0-5			.70	2	.81		1.91	n	
A0-5		2		2			1.96	n	
-+A0-5		2		2			1.90	n	8
Tpd ++B0-5		2	.46	2	.51		1.77	n	
+-B0-5		2	53		.63		1.76	n	
B0-5		2		2			1.73	n	
~+B0-5			.40	2	.46		1.72	n	
Tpd ++A0-5 +-A0-5			.86		.15		1.35	n	
A0-5			.93 .85		.88		1.33	n	
-+A0-5			.85 .95		.99 .79		1.33	n	
Tpd ++B0-5		1			.80		1.20	n	
+-B0-5			.76		.70		1.18	n	
B0-5			.61		.75		1.15	n	
-+B0-5		1			.67		1.15	n	
Tpd +-EN->		Ō			.39		0.30	n	
			49		.45		0.35	n	
Tpd +-EN->			. 67		.72		0.53	n	
-+EN->		ŏ			.61		0.44	n	
Tpd +-EN->			.66		.70		0.52	n	
-+EN->			.68		.61		0.44	n	-
				v				•••	6
I		1:	2.51		10.7	1	16.3	34 mi	A
FAN-OUT LO	AD LIMIT	: !	•	4		9	Ð	10	bads
INTERCONNE	CT PINS:	17	1	17		17	7	i,	nternal
<b>k</b> -FACTOR	RISING	0	.04	0.0	04	0.	.02	n	s/LU
	FALLING		.04	0.	08	Ő.	.04		s/LU
		-							

A0,A1,A2,A3,A4,A5,EN - EACH MUST BE DRIVEN BY A MACRO * A0,A1,A2,A3,A4,A5,B0,B1,B2,B3,B4,B5,EN -

ALL COUNT AS 2 LOADS EACH

# AMCC Q5000 MACRO SUMMARY - CMPxx


(804)


ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

CMP00 4.5 L cells 6-BIT COMPARATOR WITH LOW ENABLE

A 6-bit comparator with A > B, A = B, and A < B outputs and a low enable. Compares the magnitude of two 6-bit or less binary numbers. A high level on the enable line (EN) forces all outputs low.

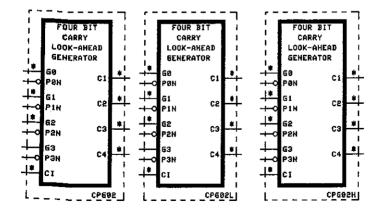
EN	COMPARE	ł	AGB	AEB	ALB	
1	x		0	0	0	
0	A>B	1	1	0	0	
0	A=B	1	0	1	0	
0	A <b< td=""><td>1</td><td>0</td><td>0</td><td>1</td><td></td></b<>	1	0	0	1	





6-4-14

)


# AMCC Q5000 MACRO SUMMARY - CPGxx

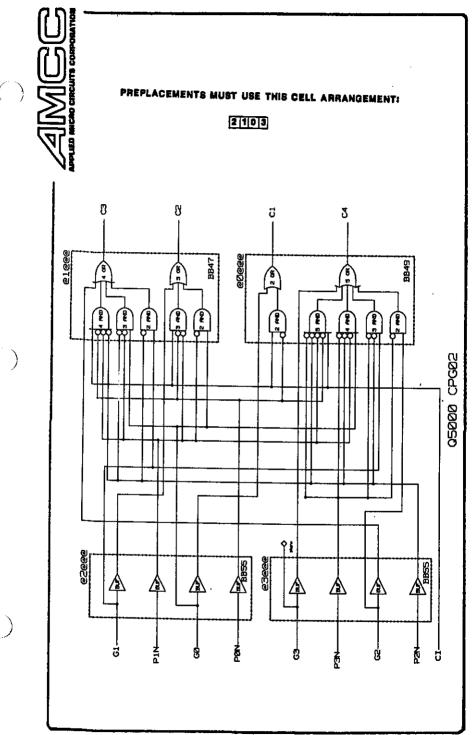
(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

CPG02 4 L	cells 4	-BIT CARRY	LOOK-AR	IEAD GENE	RATOR
Tpd PiN->Cj G1,C1-> i= 0,1, j= 1,2,	Cj 2,3	s 1.33 1.29	L 1.21 1.15	H 0.74 0.65	ns ns
I		5.50	4.78	9.54	mA
FAN-OUT LOAD	D LIMIT	9	4	9	loads
INTERCONNEC	r pins:	21	21	21	internal
k-FACTOR	RISING FALLING	0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU
* G2 COUNTS * CI COUNTS	AS 3 LOA) AS 2 LOA) AS 4 LOA) P2N, P3N 3, C4 - T	DS DS DS ~ EACH MU	TS CANNO	T BE WIR	A MACRO E-ORED ERED-DOWN

• FOR USE WITH ADD02




AMCC Q5000 MACRO SUMMARY - CPGxx (804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

CPG02 4 L cells 4-BIT CARRY LOOK-AHEAD GENERATOR

Carry look-ahead generator for use with ADD02. Inputs are negated propagate (PN) and generate (G) from up to four ADD02s, to permit a 16-bit fast addition to be performed. Additional cascading requires the C4 output from this macro to feed the CI input of the next ADD02 stage.

 $\begin{array}{rcl} C1 &= & G0 \; + \; (\bar{P}\bar{0}\bar{N})\,\bar{(}CI) \\ C2 &= & G1 \; + \; (\bar{P}\bar{1}\bar{N})\; (G0) \; + \; (\bar{P}\bar{1}\bar{N})\; (\bar{P}\bar{0}\bar{N})\,\bar{(}CI) \\ C3 &= & G2 \; + \; (\bar{P}\bar{2}\bar{N})\; (G1) \; + \; (\bar{P}\bar{2}\bar{N})\; (\bar{P}\bar{1}\bar{N})\; (G0) \; + \; (\bar{P}\bar{2}\bar{N})\; (\bar{P}\bar{1}\bar{N})\; (\bar{P}\bar{0}\bar{N})\,\bar{(}CI) \\ C4 &= & G3 \; + \; (\bar{P}\bar{3}\bar{N})\; (G2) \; + \; (\bar{P}\bar{3}\bar{N})\; (\bar{P}\bar{2}\bar{N})\; (G1) \; + \; (\bar{P}\bar{3}\bar{N})\; (\bar{P}\bar{2}\bar{N})\; (\bar{P}\bar{1}\bar{N})\,\bar{(}G0) \\ & \; + \; (\bar{P}\bar{3}\bar{N})\; (\bar{P}\bar{2}\bar{N})\; (\bar{P}\bar{1}\bar{N})\; (\bar{P}\bar{0}\bar{N})\,\bar{(}CI) \end{array}$ 



### AMCC Q5000 MACRO SUMMARY - CTRxx

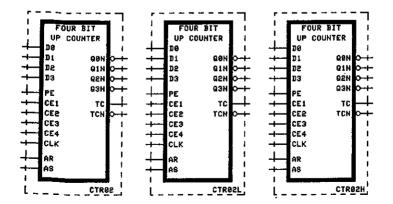
(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C I = ICC FOR 100% TTL, ELSE I = IEE

CTR02 6 L cells 4-BI	r up-coul	NTER, RIS	SING-EDGE	LATCHED,
WITH	ASYNC.	SET, ASYI	NC. RESET	•
	s	L	н	
Tpd CLK->ALL Q1N	1.83	1.68	1.05	ns
CLK->TC	1.12	1.21	0.80	ns
CLK->TCN	1.26	1.17	0.77	ns
AR->ALL Q1N	1.66	1.51	0.84	ns
AS->ALL UIN	1.12	1,25	0.79	ns
Tpd CLK->ALL QiN CLK->TC CLK->TCN AR->ALL QiN AS->ALL QiN i= 0,1,2,3				
Tsu (PE) Th (PE) Tsu (CE1,CE2) Tsu (CE3,CE4) Th (CE1,CE2) Th (CE3,CE4) Tsu (D1) Th (D1) Trec (AR) Trec (AS) FW (CLK,AS,AR)	1 93	2 17	1 63	
180 (FD) Th (DR)	-1 21	-2 02	-1 21	ns min
$\frac{111}{7} \left( \frac{12}{2} \right)$	4 28	A 09	3 45	ns min
The $(CE1, CE2)$	4.61	4.39	3 70	
$T_{\rm FL}$ (CE) (CE2)	-1.50	-1.41	-0.70	ng min
The (CE3, CEA)	-1 66	-1.55	-0.82	na min
Ten (D1)	2.00	2.00	2 00	
TE (D1)	-0.40	-0.40	0.00	ne min
Trec (AR)	1.40	1.40	1.40	ng min
Trec (AS)	2.50	2.50	2.50	ne min
PW (CLK, AS, AR)	2.86	4.00	1.67	ne min
	2100		2.07	
1	15.79	13.63	20.52	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
	0 04	0.04	0 02	no /T 11
k-FACTOR RISING FALLING	0.04	0.04	0.02	
TALLING	0.04	0.00	0.04	1187 E0
INTERCONNECT PINS:	45	45	45	internal
MAXIMUM FREQUENCY				
OF OPERATION	145	110	195	MH 7 COM
(FMAX)	135	105	185	MH MTT
MAXIMUM FREQUENCY OF OPERATION (fmax)	200	200	200	
RISING EDGE TRIGGER	ED			
PE, AR, AS, CLK - EACH	MUST BE	DRIVEN H	BY A MACRO	)
CE3,CE4 - EACH MUST	BE DRIVI	EN BY A M	ACRO	
RESET INPUT (AR) OV	ERRIDES A	ALL INPUT	S (EXCEPT	SET)
TO PULL OX OU	FPUTS LOW	7		
SET INPUT (AS) OVER			(EXCEPT R	ESET)
TO PULL QX OU		H		
ALL FAN-INS ARE 1 LO	DAD			

### AMCC Q5000 MACRO SUMMARY - CTRxx

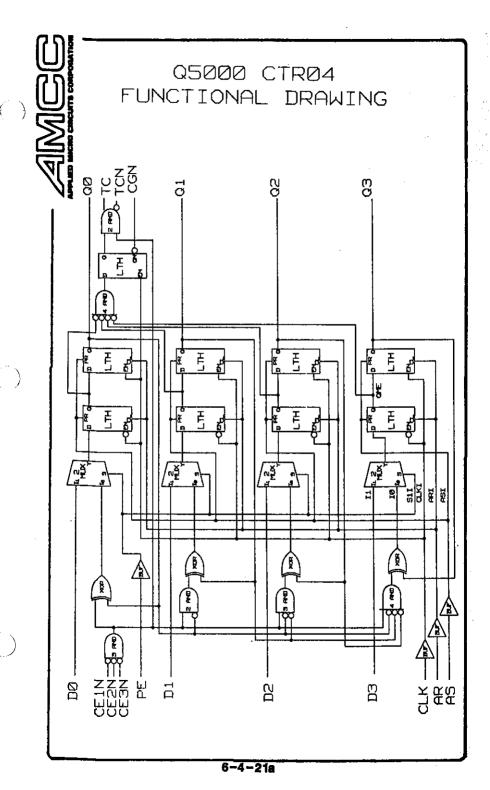
(804)

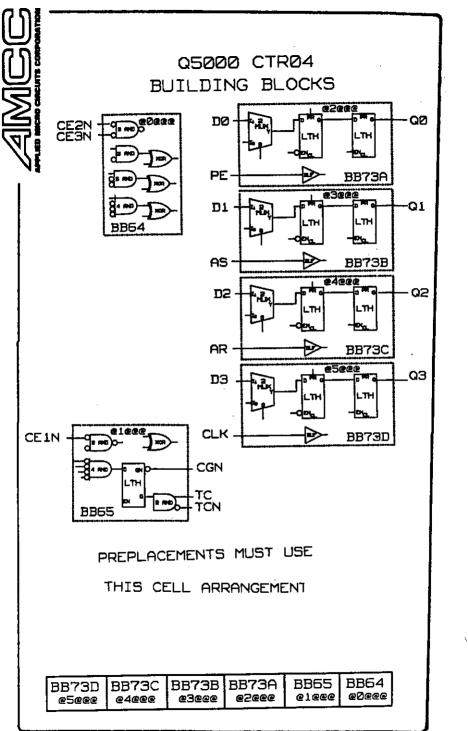

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

CTR02 6 L cells 4-BIT UP-COUNTER, RISING-EDGE LATCHED, WITH ASYNC. SET, ASYNC. RESET

CTR02 is a positive edge triggered, resetable, four-bit up-counter with active low outputs. TC, TCN are synchronous with the QiN outputs and are in phase with them. This macro may be cascaded with itself to form up to a 16-bit counter by connecting TC outputs to CE inputs.

For any number of CEi inputs, i < 4, the unused CE inputs should be tied high.


AR	AS	PE	CE1	CE2	CE 3	CE4	CT K	MODE
0	0	1	X	x	X	X	R	LOAD
0	0	0	0	X	X	Х	R	HOLD
0	0	0	х	0	X	X	R	HOLD
0	0	0	X	X	0	X	R	HOLD
0	0	0	X	X	X	0	R	HOLD
0	0	0	1	1	1	1	R	COUNT
1	0	Х	Х	X	X	X	Х	RESET
0	1	X	X	X	X	X	X	SET
1	1	X	X	X	Х	X	Х	UNKNOWN




ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

> í ł TRO 08N 01N 02N 02N τc SN ı COUNTER FOUR BIT Ì '1 I I I I ٩ មិតខ្លួន 5.5 R S 8 H A A 1 I L, t ſ Ţ CTR02 I 08N 01N aen Dan Ê CN. I COUNTER TIE NUC 1 5 5 5 5 5 X 1 2 2 S 8 Ň Ä A Se CTRO 28H 21H 22H 22H 5 NO. 1 COUNTER FOUR BIT I 16-BIT UP-COUNTER USING CTR02 ł 1 TIE UNUSED COUNT-ENABLE INPUTS HIGH ₽ 555 CE2 8288 28 닅 _CTRee_ Net **01N** D2N NSG 2 CN CN COUNTER FOUR BIT COUNT ENABLE 1 9 ä S 8 H N N CLOCK

Ç





)

)

 $\left.\right)$ 

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

detail

ALL VALUES	ARE	TYPICAL	АТ	NOMINA	L SUPPLY	VOLTAGES
TA = 25oC						
I = ICC FOF	100	)& TTL	ELSI	E I = 1	(EE	

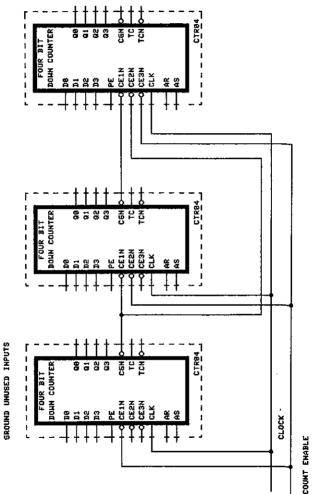
(804)

AMCC Q5000 MACRO SUMMARY - CTRxx

CTR04 6 L C	ells 4-BIT	DOWN-CO	UNTER, H	RISING-EDG	E LATCHED,
	ASYNC	. SET, A	SYNC. RE	SSET, OGN	OUTPUT
mad OT V-NT		5 1 7 3	1 E E	11	
AD-NALL OF	r ör	1 50	1.55	1 12	118 ng
AS-DALL OI		1.70	1.53	0.98	118 ng
(T.K-)TC.TC		2.02	1.93	1.36	ne
CLK = > CGN		1.46	1.35	0.83	ns
CEIN->TC.TC	N	0.68	0.66	0.42	ns
Tpd CLK->AL AR->ALL Qi AS->ALL Qi CLK->TC,TCN CLK->CGN CEIN->TC,TC i=	0,1,2,3			••	
	• • •				
Tsu (PE)		2.00	2.00	1.00	ns min
Th (PE)		-0.30	-0.30	0.00	ns min
Tsu (CElN,C	E2N, CE3N)	3.30	2.90	1.60	ns min
Th (CE1N,CE	2N, CE3N)	-0.90	-0.90	-0.90	ns min
Tau (D0,D1,	D2,D3)	2.30	1.80	0.90	ns min
Th (D0,D1,D	2,03)	0.00	0.00	0.00	ns min
Trec (AR, AS	) 3D)	1.40	1.40	1.40	ns min
Tsu (PE) Th (PE) Tsu (CElN,C Th (CElN,CE Tsu (D0,D1, Th (D0,D1,D Trec (AR,AS PW (CLK,AS,	AR)	2.00	4.00	1.0/	ns min
I		16.88	14.36	20.93	mA
FAN-OUT LOA	D LIMIT:	9	4	9	loads
k-FACTOR	DIGING	0 04	0.04	0 02	20/11
K-FACTOR	FALLING				
	LULUING	0.04	0.00	0.04	1187 110
INTERCONNEC	T PINS:	45	45	45	internal
MAXIMUM FRE	OUENCY				
OF OPERAT	QUENCY ION	150	115	195	MHZ COM
(fMAX)		140	105	185	MHZ MIL
	GE TRIGGER				· ·
	CLK - EACH				BY A MACRO
CEIN, CEZN	CEDN - AT	TENOT O	NE MUST	DE DETARN	DI A MACRO

RESET INPUT (AR) OVERRIDES ALL INPUTS (EXCEPT SET) TO PULL QX OUTPUTS LOW SET INPUT (AS) OVERRIDES ALL INPUTS (EXCEPT RESET) TO PULL QX OUTPUTS HIGH

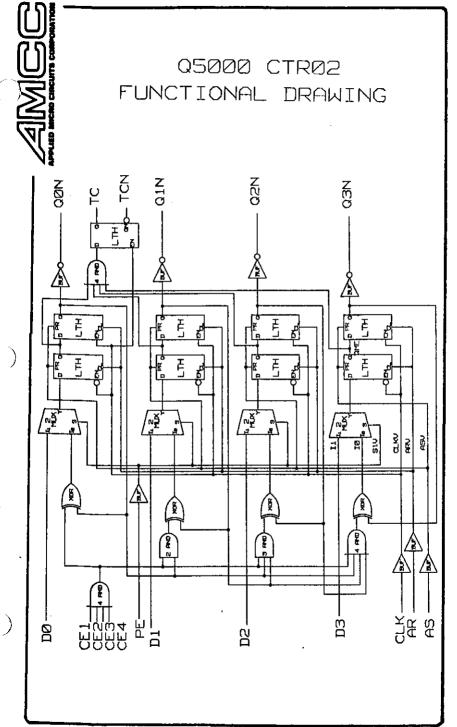
(804)

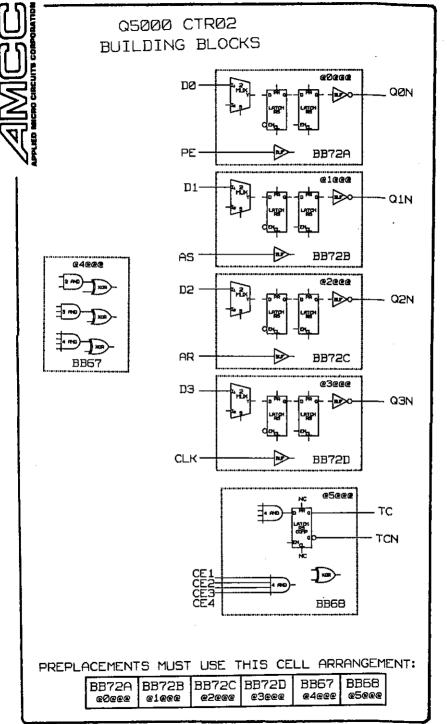

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{0C}$ I = ICC FOR 100% TTL, ELSE I = IEE

CTR04 6 L cells 4-BIT DOWN-COUNTER, RISING-EDGE LATCHED, ASYNC. SET, ASYNC. RESET, CGN OUTPUT

CTR04 is a positive edge triggered, resetable, four-bit down-counter with active high outputs. TC, TCN are synchronous with the Q outputs and are in phase with them. Cascadable for up to 12-bit fast down-counter by attaching CGN output from one stage to CEN input of following stage; can cascade additional stages by attaching TCN output of one stage to CEN input of following stage.

AR	AS	PE	CEIN	CE2N	CE3N	CLK	MODE
0 0 0 0 1 0 1	0 0 0 0 0 0 1 1	1 0 0 0 0 X X X X	X 1 X 0 X X X X X	X X 1 X 0 X X X X	X X 1 0 X X X X	R R R R R X X X X	LOAD HOLD HOLD COUNT RESET TO 0 SET TO 1 UNKNOWN
I         FOUR           J         DOHN C           I         D0           I         D2           I         D2           I         D2           I         D2           I         D2           I         D3           I         CE3N           I         CLK           AR           I         AS		+ +	FOUR DOWN C DO DI D2 D3 PE CE2N CE2N CE2N CLK AR AS		++ - + + + + + + +	FOUR DOHN CO D0 D1 D2 D3 PE CE1N CE2N CE2N CE3N CLK AR AS	


ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES  $TA = 25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE






) Ę

Ţ





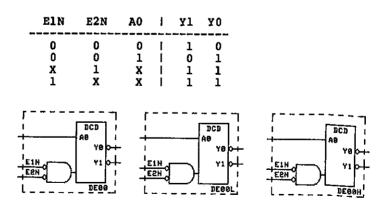
(

⁶⁻⁴⁻²⁵b

()

)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE


detail

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL OR +5V REF ECL PATH, ELSE I = IEE

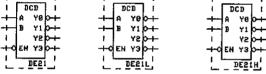
******									
DEOO	0.5	L	cell	1:2	DECODER	LOW	with	DU AL	LOW-EN
					S	L		 H	
Tpd ++	A0-)	>¥(	)		0.44	0.40	-	0.29	na
	A0-)		-		0.32	0.35		0.25	ns
	A0-)				0.37	0.42	-	0.30	ns
_	A0-)				0.51	0.45	5 (	0.28	ns
Tpd	A0=(	-			0.00				
			N->YO		0.60	0.56		0.43	ns
Tpd	A0=1		N->YO		0.52	0.56		0.40	ns
-			N->Y1		0.70	0.64	i 1	0.47	5.6
			N->Y1		0.57	0.61		).43	ns Ns
									118
I					1.17	0.81	. 1	.62	mA
FAN-OU?	r loi	٩D	LIMIT:		9	4	9	•	loads
k-FACTO	OR	RI	SING		0.04	0.04	. (	).02	na/LU
		FA	LL ING		0.04	0.08		.04	ns/LU

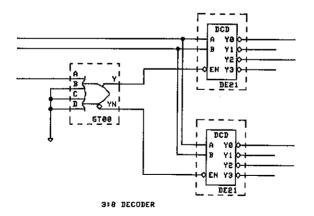
EITHER EIN OR E2N MUST BE DRIVEN BY A MACRO



-----

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL OR +5V REF ECL PATH, ELSE I = IEE


DE21 L Ce	2:4	DECODER WITH	LOW-EN	ABLE, OU	TPUT LOW
		S	L	Н	
Tpd ++ A->	Y0	0.54	0.49	0.35	ກຮ
A->	Y0		0.43	0.29	ns
+- A->	Y1	0.36	0.40	0.29	ns
-+ A->	Yl	0.38	0.34	0.23	ns
++ A->	Y2	0.54	0.49	0.35	ns
A->	Y2	0.38	0.43	0.29	ns
+- A->		0.35	0.39	0.29	ns
-+ A->	Y3	0.38	0.33	0.22	ns
Tpd ++ B->	Y0	0.69		0.48	ns
B->	YÛ	0.57		0.40	ns
++ B->	Y1	0.60	0.55	0.44	ns
B->	Yl	0.53	0.57	0.39	ns
+- B->	Y2	0.57	0.61	0.51	ns
-+ B->	Y2	0.69	0.62	0.38	ns
+- B->	•¥3	0.54	0.58	0.48	ns
-+ B->	•¥3	0.58	0.53	0.34	n8
Tpd ++ EN-			0.71	0.58	ns
EN-	->YO	0.80	0.85	0.53	ns
++ EN-	·>Yl	0.67	0.64	0.55	ns
EN-	·>Yl	0.78	0.82	0.53	n8
EN-		0.81		0.54	ns
++ EN-		0.68	0.64		ns
EN-	·>¥3	0.79	0.83	0.53	nø
I		2.12	1,40	2.80	mA
FAN-OUT LC	AD LIMIT:	9	4	9	loads
<b>k-FACTOR</b>	RISING	0.04	0.04	0.02	ns/LU
	FALLING	0.04	0.08	0.04	ns/LU


EN MUST BE DRIVEN BY A MACRO B MUST BE DRIVEN BY A MACRO

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL OR +5V REF ECL PATH, ELSE I = IEE

-----DE21 L cell 2:4 DECODER WITH LOW-ENABLE, OUTPUT LOW YO = EN+B+A  $YI = EN+B+\overline{A}$   $Y2 = EN+\overline{B}+A$   $Y3 = EN+\overline{B}+\overline{A}$ EN B A I YO YI Y2 Y3 ____ ---------1 1 1 1 1 1 0 1 7 0 X | 1 1 0 | 0 1 1 | 1 0 0 | 1 1 1 | 1 1 X X | 1 0 0 | 0 1 0 0 0 0 1 1 **O** r----- - - - -Γ





### (804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL OR +5V REF ECL PATH, ELSE I = IEE

DE24	L cell	2:4	DECODER,	HIGH	ENABLE,	OUTPUT	LOW
			S	 L	н Н		
մեկ թվա			0.49	0.4		.32	ns
	·A->Y0		0.33	0.3	37 0	<u> </u>	ກຣ
	-A>Y1		0.36			~ ~	ns
	A->Y1		0.40	0.3			ns
	·A->Y2		0.47	0.4	13 0.	~ ~	ns
	·A->Y2		0.33	0.3			ກສ
	·A->Y3		0.36		io 0.		าธ
-+	A->Y3		0.39	0.3	35 0.		กร
	B->Y0			0.5			าธ
	B->Y0		0.56	0.5			າສ
++	B->Y1		0.39	0.6		- · ·	19
	B->Y1		0.59	0.3			18
+	B->Y2		0.71				າຮ
-+	B->Y2		0.60	0.5			18
+-	B->Y3				i 0.		18
-+	B->Y3		0.36	0.3	2 0.	<b>.</b>	18
+	E->Y0		0.75	0.7			18
-+	E->Y2			0.6			18
+	E->Y1			0.8			18
-+	E->Y3		0.79				18
			••••	•••	5 0.		10
			2.12	1.4	0 2.	79 r	nA
'AN-OU'	T LOAD LI	MIT:	9	4	9	נ	.oads
-FACT(	OR RIS	ING	0.040	0.0	40 0.	020 -	ns/LU
		LING	0.040				is/LU

E MUST BE DRIVEN BY A MACRO B MUST BE DRIVEN BY A MACRO

(804)

()

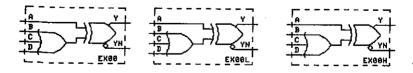
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL OR +5V REF ECL PATH, ELSE I = IEE

DE24 L cell 2:4 DECODER, HIGH ENABLE, OUTPUT LOW

 $YO = \overline{E}+B+A$   $YI = \overline{E}+B+\overline{A}$   $Y2 = \overline{E}+\overline{B}+A$   $Y3 = \overline{E}+\overline{B}+\overline{A}$ 

E	B	A	1	¥0	¥1	¥2	¥ 3
1	Ò	0		0	-	-	1
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	0
0	X	X	- İ	1	1	1	i

<u> </u>	<b></b>	<b>F</b>
I DCD I	I DCD I	
-+ A 180-+-	-+- A Y0 >-+-	-+
-+ B Y1 0-+-		-+ ₽ Y10-+-
I Y2p+	I   Y2 p++	I   Y2 0-∔-
+- ε y3p+-	-+ E Y3 0-+-	-+-{E Y3 0-+-
DE24		


ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

(804)

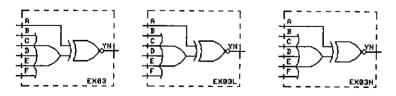
EX00 0.5 L	cell 3-IN	PUT OR-E	KOR/EXNO	R	
Tpd ++ A->Y		8 0.67	L 0.61	н 0.40	ns
A->Y +- A->Y		0.40 0.45	0.46 0.53		ns ns
-+ A->Y		0.70	0.62	0.36	ns
Tpd +- A->Y -+ A->Y		0.44 0.61			ns ns
++ A->Y A->Y	N	0.62	0.52	0.35	ns
Tpd ++ B,C,	D->Y	0.37 0.89		0.29	ns ns
B,C, +- B,C,		0.70 0.66		0.47 0.56	ns ns
-+ B,C,	D->Y	0.94	0.86	0.49	ns
Tpd +- B,C,I -+ B,C,I		0.63 0.87		0.54 0.45	ns ns
++ B,C,I B,C,I		0.79	0.73	0.53	ns
• •		0.66	0.71	0.45	ns
I		1.17	0.81	1.62	mA
FAN-OUT LOAD	D LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

EITHER B, C OR D MUST BE DRIVEN BY A MACRO

 $Y = A \oplus (B + C + D)$  $YN = \overline{A} \oplus (\overline{B} + \overline{C} + \overline{D})$ 



(804)


(

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C I = ICC FOR 100% TTL, ELSE I = IEE

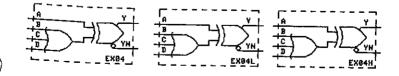
EX03	L cell	5-INPUT	OR, 2-	INPUT EXN	IOR	
mad ()	8 \ V31		S	L	н	
Tpd ++			0.76	0.64	0.40	ns
	A->YN		0.65		0.31	ns
	A->YN		0.42	0.47		ns
	A->YN			0.52		ns
Tpd ++			1.00		0.62	ns
	B->YN		0.92			ns
	B->YN		0.72	0.79	0.62	ns
	B->YN		0.71	0.76	0.58	ns
Tpd ++	C->YN		1.00	0.90	0.62	ns
-+	C->YN		0.92	0.83	0.44	ns
+	C->YN		0.69	0.75	0.60	ns
	C->YN		0.73	0.80	0.48	ns
Tpd ++	D, E, F->	YN	1.01	0.91	0.61	ns
- +	D, E, F->	YN	0.90	0.81	0.45	ns
+	D, E, F->	YN	0.69			ns
	D,E,F->		0.77	0.83	0.48	ns
	• • •					
I			0.81	0.63	1.26	mA
FAN-OU	T LOAD	LIMIT;	9	4	9	loads
k-FACT	ÓR F	RISING	0.04	0.04	0.02	ns/LU
		ALLING	0.04	0.08	0.04	ns/LU
	-			0.00	0.04	1121 10

* EITHER B, C, D, E OR F MUST BE DRIVEN BY A MACRO

 $YN = A \oplus (B + C + D + E + F)$ 



(

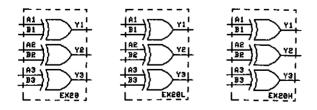

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

(804)

EX04 0.5	L cell	3-INPUT OR-	EXOR/EXN	OR	
Tpd ++ A->? A->? +- A->?	Ľ	S 0.63 0.38	L 0.54 0.43		ກອ ກອ
-+ A->3 Tpd +- A->3 -+ A->3	ľ ľn ľn	0.43 0.60 0.43 0.61	0.54	0.33 0.27	ns NS NS NS
++ A->3 A->3 Tpd ++ B,C, B,C,	N D->Y D->Y	0.64 0.38 0.84 0.66	0.43 0.76 0.72	0.28 0.44 0.48	ns ns ns ns
+- B,C, -+ B,C, Tpd +- B,C, -+ B,C,	D->Y D->YN	0.63 0.87 0.63 0.87	0.79 0.69	0.43 0.46	กร กร กร กล
++ B,C, B,C,	D->YN	0.84 0.66	0.76 0.71	0.43 0.47	ns NS
I FAN-OUT LOA	D LIMIT:	<b>1.</b> 17 9	0.81 4	1.62 9	mA loads
k-FACTOR	RISING FALLING	0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

EITHER B, C OR D MUST BE DRIVEN BY A MACRO

 $Y = A \oplus (B + C + D)$  $YN = \overline{A} \oplus (\overline{B} + \overline{C} + \overline{D})$ 

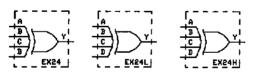



(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

SX20 	L cell	TRIPLE 2-IN	PUT EXOR		
_		8	L	H	
	1->Y1,A3->		0.54	0.35	ns
	1->Y1,A3->		0.47	0.33	ns
	1->Y1,A3->		0.53		ha
	1->Y1,A3->		0.42	0.29	ns
	1->Y1,B3->			0.53	ns
	1->Y1,B3->		0.67	0.53	ns
	1->Y1,B3->		0.75	0.43	ns
	1->Y1,B3->		0.65	0.43	ns
Pd ++A		0.74	0.62	0.36	ns
	2->¥2	0.50	0.57	0.36	ns
	2->¥2	0.84	0.75	0.41	ns
	2->¥2	0.39	0.45	0.30	hs
Ipd ++B		0.97	0.87		ns
	2->¥2	0.70	0.77	0.51	ns
	2->¥2	1.00	0.91	0.57	ns
B	2->¥2	0.69	0.76	0.47	ns
		2.43	1.89	3.78	mA
'AN-OUT	LOAD LIMI	T: 9	4	9	loads
-FACTO	R RISIN FALLI		0.04	0.02	ns/LU ns/LU

B1, B2, B3 - EACH MUST BE DRIVEN BY A MACRO




ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

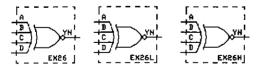
EX24 0.5	L cell 4	-INPUT EXO	R		
Tpd ++ A, C A, C +- A, C -+ A, C Tpd ++ B, D B, D +- B, D -+ B, D	->Y ->Y ->Y ->Y ->Y ->Y ->Y	8 1.41 0.59 0.62 1.20 1.25 0.56 0.68 1.35	L 1.20 0.75 0.71 1.06 1.05 0.67 0.76 1.20	H 0.62 0.44 0.57 0.57 0.57 0.40 0.49 0.62	ns ns ns ns ns ns ns ns
I		1.26	1.08	1.71	mA
FAN-OUT LO.	AD LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

B, D - EACH MUST BE DRIVEN BY A MACRO

 $Y = A \oplus B \oplus C \oplus D \qquad \oplus = EXOR$ 



(804)

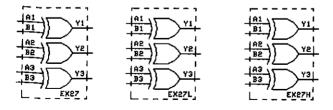

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

EX26	L	cell	4-INPU 1	EXNOR			
			s	3	L	H	
Tpd	+- A- -+ A- A-	>YN	1	.69 .27 .55	0.77 1.12 0.67		ns ns ns
Тpđ	++ A- +- B- -+ B- B-	>YN >YN	0 1	.27 .89 .51 .86	1.11 1.02 1.29 0.99	0.66	ns ns ns ns
Tpd	++ B- +- C- -+ C- C-	>YN >YN	0 1	.47 .66 .23 .61	1.29 0.77 1.08 0.73	0.51 0.60	ns ns ns ns
Tpđ	++ C- +- D- -+ D- D- ++ D-	>YN >YN >YN	0 1 0	.31 .89 .45 .82 .48	1.15 1.02 1.29 0.95 1.34		ns ns ns ns ns
I				.26	1.08	1.71	mA
FAN-	OUT LO	AD LIMIT	: 9		4	9	loads
k-FA	CTOR	RISING FALLIN		.04 .04	0.04 0.08	0.02 0.04	ns/LU ns/LU

B, D - EACH MUST BE DRIVEN BY A MACRO

### $YN = \overline{A} \oplus \overline{B} \oplus \overline{C} \oplus \overline{D}$




(

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

EX27	L cell TR	IPLE 2-1	NPUT EXO	R	
Tpd ++Al->	Y1,A2->Y2,	S	L	Н	
A3-2		0.62	0.54	0.30	nŝ
A32		0.42	0.47	0.31	ns
A3->		0.60	0.53	0.26	ns
A3->		0.37	0.42	0.27	ns
B3->	¥3	0.82	0.74	0.43	ns
B3->		0.62	0.67	0.45	ЛВ
B <b>3-</b> >		0.83	0.75	0.40	กร
B3->	Y1,B2->Y2, Y3	0.60	0.65	0.44	ns
I		2.43	1.89	3.78	mA
FAN-OUT LC	AD LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04	0.02 0.04	ns/LU ns/LU

B1, B2, B3 - EACH MUST BE DRIVEN BY A MACRO



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES  $TA = 25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

EX33	0.5 L cell	3-INPUT	EXOR/EXNO	OR	
		S	L	Н	
Tpd ++	A->Y	0.84	0.72	0.33	ns
-+-	A->YN	0.40	0.45	0.31	ns
	A->Y	0.45	0.50	0.29	ns
+	A->YN	0.53	0.47	0.22	ns
+-	A->Y	0.40	0.45	0.31	ns
++	A->YN	0.84	0.72	0.33	ns
-+	A->Y	0.54	0.47	0.22	ns
	A->YN	0.45	0.50	0.29	ns
++	B->Y	0.81	0.71	0.43	ns
+-	B->YN	0.70	0.75	0.49	ns
	B->Y	0.63	0.68	0.48	ns
-+	B->YN	0.88	0.80	0.44	ns
+-	B->Y	0.67	0.72	0.49	ns
	B->YN	0.81	0.72	0.43	ns
+	B->Y	0.88	0.79	0.44	ns
	B->YN	0.63	0.69	0.48	ns
++	С->Х	1.01	0.92	0.60	ns
+-	C->YN	0.86	0.91	0.67	ns
	С->Х	0.87	0.93	0.53	ns
-+	C>YN	1.05	0.96	0.46	ns
+-	С->Х	0.84	0.89	0.67	ns
++	C->YN	1.01	0.92	0.60	ns
-+	С->Ү	1.04	0.95	0.46	ns
	A->Y A->YN A->YN A->YN A->YN A->YN A->YN A->YN B->Y B->YN B->Y B->YN B->Y B->YN B->Y B->YN C->Y C->YN C->Y C->YN C->Y C->YN	0.88	0.93	0.53	ns
I		1.40	1.04	2.07	mA
FAN-OUT	LOAD LIMIT:	9	4	9	loads
k-FACTO	OR RISING	0.040	0.040	0.020	ns/LU
	FALLING	0.040	0.080	0.040	ns/LU

B, C - EACH MUST BE DRIVEN BY A MACRO

 $Y = A \oplus B \oplus C$   $YN = A \oplus B \oplus C$ 

### 6-4-38

(804)

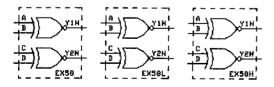
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250CI = ICC FOR 100% TTL, ELSE I = IEE

EX50 0.5 L cell	2-TERM, 2-1	NFUT OR-	EXOR/EXN	
	 S	 L	н	
$\operatorname{Tpd} (C + D = 0)$	-	-	11	
++ A, B->Y	0.89	0.79	0.49	ns
A, B->Y	0.57	0.65	0.38	ns
+- A, B->YN	0.48	0.53	0.39	ns
-+ A, B->YN	0.76	0.67	0.35	ns
Tpd (C + D = 1)		0.07	0135	118
+- A, B->Y	0.54	0.61	0.42	ns
-+ A, B->Y	0.86	0.75	0.42	ns
++ A, B->YN	0.93	0.80	0.46	ns
A, B->YN	0.47	0.53	0.35	ns
Tpd (A + B = 0)			0.00	118
++ C, D->Y	1.14	1.03	0.68	ns
C, D->Y	1.07	1.16	0.67	ns
+- C, D->YN	1.07	1.15	0.75	ns
-+ C, D->YN	1.10	0.99	0.53	ns
Tpd $(A + B = 1)$	1.10	0.55	0.55	118
+- C,D->Y	0.78	0.85	0.63	
-+ C, D->Y	1.16	1.01	0.56	ns
++ C, D->YN	1.08	1.00	0.63	ns
C, D->YN	0.79	0.90		ns
C/D-/IN	0.79	0.90	0.55	ns
I	1.17	0.81	1.62	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
k-FACTOR RISING	0.04	0.04	0 0 2	
FALLING	0.04	0.04	0.02	ns/LU
FALLING	0.04	0.08	0.04	ns/LU
EITHER C OR D MUSI	BE DRIVEN	BY A MA	CRO	
{ = (A + B) ⊕ ( C +	D) YM	$I = \overline{\langle A   + }$	B) @ (	Ē-+-D-)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		 	, 1 . ¥

### 6-4-39

(804)

(804)


(

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

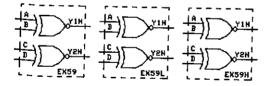
EX58	0.5 I	cell	DUAL 2-INF	UT EXNOR		
Tpđ	++ A->	YIN	s 0.62	L 0.53	H 0.35	ns
	+- A-> -+ A->			0.47 0.53		ns ns
Tpd	A-> ++ B->	YIN	0.37	0.42	0.29	ns
тра	+- B->	YIN	0.62	0.67	0.49	ns ns
	-+ B-> E->			0.75 0.66		מת המ
Tpd	++ C-> +- C->			$0.54 \\ 0.44$		ns ns
	-+ C->	Y2N	0.55	0.48	0.28	ns
Tpd	++ D->	Y2N	0.84	0.42 0.77	0.50	ns ns
	+- D-> -+ D->			0.66 0.74		ns ns
	D->	Y 2N	0.66	0.72		ns
I			1.62	1.26	2.07	mA
FAN-	OUT LOA	D LIMIT:	9	4	9	loads
k-FA	CTOR	RISING FALLING	0.04 0.04	0.04 0.08		ns/LU ns/LU

B, D - EACH MUST BE DRIVEN BY A MACRO

 $YIN = \overline{A} \oplus \overline{B}$   $Y2N = \overline{C} \oplus \overline{D}$ 



(


(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

		L cell DU		UT EXNOR		
			S	L	Н	
Tpd		>Yln, C->Y2N	0.63	0.53	0.36	ns
		>Y1N, C->Y2N	0.43	0.48	0.35	ns
		>YlN,C->Y2N	0.60	0.53	0.31	ns
m a		>YlN,C->Y2N	0.37	0.42	0.29	ne
Tpd		>Y1N,D->Y2N	0.82	0.74	0.50	n6
		>YlN,D->Y2N	0.63	0.68	0.50	nŝ
		>Y1N,D->Y2N	0.84	0.76	0.48	ns
	B-	>¥lN,D->¥2N	0.57	0.62	0.48	ns
I			1.62	1.26	2.07	mA
FAN-	OUT LO	AD LIMIT:	9	4	9	loads
k-FA	CTOR	RISING	0.04	0.04	0.02	ns/LU
		FALLING	0.04	0.08	0.04	ns/LU

B, D - EACH MUST BE DRIVEN BY A MACRO

 $YIN = \overline{A} \oplus \overline{B}$   $Y2N = \overline{C} \oplus \overline{D}$ 



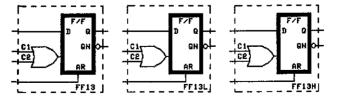
(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

EX59	D 0.5	L cell	DUAL 2-INFU	T EXNOR -	DRIVER
			DRIVER		
Tpd		Y1N, C->Y2N			ns
		Y1N, C->Y2N			ns
		Y1N, C->Y2N			ns
		Y1N, C->Y2N			ns
Tpđ		Y1N,D->Y2N			ns
	+- B->	Y1N, D->Y2N	1 0.47		ns
	-+ B->	Y1N, D->Y2N	1 0.52		ns
	B->	Y1N, D->Y2N	0.45		ns
I			2.79		mA
FAN-	OUT LOP	AD LIMIT:	15		loads
k-FA	CTOR	RISING	0.02		ns/LU
		FALLING	0.02		ns/LU

B, D - EACH MUST BE DRIVEN BY A MACRO

### $YIN = \overline{A} \oplus \overline{B}$ $Y2N = \overline{C} \oplus \overline{D}$

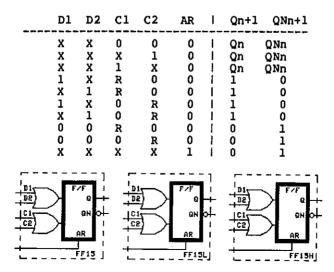



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

FF13 L cell D F/	F WITH ASYNC.	RESET,	Q, QN	
	s	L	Н	
Tpd ++ C1,C2->Q		1.06	0.63	ns
+- C1,C2->Q	0.86	0.93	0.69	ns
Tpd +- C->ON	0.82	0.88	0.66	лв
++ C->QN	0.96	0.87	0.57	ns
Tpd +- AR->Q	0.96	1.06	0.79	ns
Tpd ++ AR->QN	1.23	1.10	0.79	ns
Tsu (D)	1.50	1.50	1.50	ns min
Th (D)	0.00	0.00	0.00	ns min
Trec	2.20	2.20	2.20	ns min
FW (C1, C2)	2.38	3.33	1.39	ns min
FW (AR)	2.38	3.33	1.39	ns min
I	2.07	1.71	2.75	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
k-FACTOR RISING FALLING	0.04 0.04	0.04 0.08	0.02	ns/LU ns/LU

EITHER C1 OR C2 MUST BE DRIVEN BY A MACRO AR MUST BE DRIVEN BY A MACRO

AR	D	C1+C2	1	Qn+1	QNn+1
-	DATA DATA X DATA	1 X	     	Qn Qn O DATA	QNN QNN 1 ASYNC. RESET DATA




(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

FF15 L C	ell D F/F WITH	ASYNC.	RESET,	GATED CLO	CK Q, QN
		 	L	н	
Tpd ++ Cl +- Cl Tpd +- AR	, C2->Q , C2->QN , C2->QN , C2->QN ->Q	1.19 0.85 0.82 0.98 0.96	1.06	0.66 0.59 0.79	ns ns ns ns ns
Tpd ++ AR Tsu (Dl,D Th (Dl,D Trec FW (Cl,C2	2) 2)	1.23 1.40 -0.20 2.50 2.38	1.10 1.40 -0.20 2.50 3.33	2,50	ns min ns min ns min ns min ns min
I		2.07	1.71	2.75	mA
FAN-OUT LO	OAD LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

EITHER C1 OR C2 MUST BE DRIVEN BY A MACRO AR MUST BE DRIVEN BY A MACRO



6-4-44

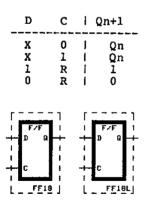
 $\left( \right)$ 

 $\left( \right)$ 

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

(804)

				··	<b></b>							
F)	F]7 	L	ce]	1 D	F/F 1	VITH	ASYNC.	SET,	GATED	CLOCK	Q,	QN
m							S	L	F	 ł		
11	þđ			C2-			0.88	0.		.53	ns	
		++	$c_1$	C2-	>QN >QN		0.80 1.30	0.8	••••••	0.62	ns	
		+-	čī,	C2-	>QN		0.93	1.1		).68 ).74	ns	
		++	AS-	>Q<			1,12	1.0		).74	ns ns	
		+-	AS-	>QN			1.02	1.1		.82	ns	
Τe			,D2				1.30	1.3	30 J	.30	ns	min
T)		(D1	, D2	:)		-	-0.20	-0.2	20 ~0	.20		min
	ec	21,0		<b>~</b> `			2.20	2.2		2.20		min
		, <b>1</b> , C	Z , P	S)			2.38	3.3	33 1	.39	ns	min
I							2.07	1.7	1 2	2.52	mA	
FA	N-0	ŪT	LOA	DL	IMIT		9	4	9	)	10	ads
k	FAC	TOR	R	ISI	NG		0.04	0.0	4 0	.02	ne.	/LU
			F	ALL	ING		0.04	0.0	8 0	.04		/LU
D1	D2	cı	C2	AS	Qn+1	QNn	+1					
X	X	0	0		Qn	QNn						
Х	х	x	ĭ	ŏ	Qn	QNn						
X	X	1	Х	0	Qn	QNn						
1 X	X 1	R	0	0	1	0						
î	x	R O	0 R	0 0	1 1	0						
X	ï	ŏ	R	ŏ	i	ŏ						
0	0	R	Õ	Ō	ō	ĭ						
0	0	0	R	0	0	1						
X	X	Х	Х	1	1	0						
		·						<b>-</b> -				
- 7 7	D1 D2	>	FZ	a +		$\geq$		D1 D2		a		
۱ +	C21		6	NN OF		$\overline{\}$	GN: OI-	4015	$\leq 1$	ан. <del>Сн.</del> -		
+	<u>~</u> [_	$ \sim$	AS			<u></u>	AS	<u></u>		B		
+				17	- <del></del>			+				
L				17_	L		EF17L	•	- <b></b> - <u>F</u> I	<u>17H</u>		


6-4-45

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

FF18 0.5	L cell D	F/F WITH	Q OUTPUT		
Tpd ++ C- Tpd +- C-		S 1.35 0.94	L 1.23 1.03	H N	ns
TSU (D) Th (D) PW (C)		1.20 -0.20 2.38	1.20 -0.20 3.33	O T A	ns min ns min
I		1.49	1.31	A V A I	ns min mA
FAN-OUT LO	DAD LIMIT:	9	4	Ĺ	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08		ns/LU ns/LU

C MUST BE DRIVEN BY A MACRO FOR HIGH-DENSITY APPLICATIONS, CONSULT AMCC

• NO H-OPTION



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES  $TA = 25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

FF19 0.5	L cell D	F/F WITH	QN OUTPU	 T	**
Tpd ++ C-; +- C-; Tsu (D)		S 0.96 0.74 1.50	L 0.86 0.80 1.50	H N O T	ns
Th (D) PW (C)		-0.20 2.38	-0.20 3.33	T A V	ns min ns min ns min
I FAN-OUT LO	DAD LIMIT:	1.49 9	1.31 4	A I L	mA loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08		ns/LU ns/LU

------

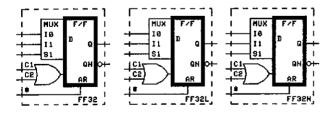
C MUST BE DRIVEN BY A MACRO

FOR HIGH-DENSITY APPLICATIONS, CONSULT AMCC

• NO H-OPTION

D	С	ł	QNn+1
DATA DATA DATA DATA	0 1 R	Ì	QNn QNn DATA

Ĩ,		1	٢.		1
1	F/F	1	1	F/F	1
+-	ם	1	+-	D	1
1		1	- 1		1
1	QN	0⊢	- L	QN	o⊢
-1	С	1	-+	C	1
F.			- 1		E L
L.	F <u>F</u> 19	21	L.	F <u>F</u> 19	Ľ


(804)

 $\left( \right)$ 

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

FF32 L cell	2:1 MUX W GATED CL(		F, ASYNC	RESET,	,
Tpd ++C->Q +-C->Q +-C->QN ++C->QN Tpd +-AR->Q ++AR->ON		1.14 0.99 1.08 1.19	L 1.30 1.24 1.06 0.99 1.33 1.07	0.92 0.82 0.71	ns ns ns ns ns ns ns
Tsu (I0,I1) Tsu (S1) Th (I0,I1) Th (S1) Trec PW(C1,C2,AR)	-	1.60 1.80 0.20 -0.10 1.30	2.10 2.20 0.20 -0.10 - 1.30 3.33	1.30 1.40 0.20 0.10 1.30	ns min ns min ns min ns min ns min ns min
I		2.30	1.94	3.20	mA
FAN-OUT LOAD	LIMIT:	9	4	9	loads
	SING ALLING		0.04 0.08	0.02 0.04	ns/LU ns/LU

AR COUNTS AS 2 LOADS DATA IS LATCHED ON RISING EDGE OF C1 OR C2 EITHER C1 OR C2 SHOULD BE DRIVEN BY A MACRO S1, AR - EACH MUST BE DRIVEN BY A MACRO



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

# FF32 L cell 2:1 MUX WITH D F/F, ASYNC. RESET, GATED CLOCK,

(804)

### SI IO II CI C2 AR Qn+1 QNn+1

х	Х	Х	0	0	0	Qn	Q Nn	
Х	Х	Х	1	Х	0	Qn	QNn	
х	Х	Х	Х	1	0	Qn	QNn	
0	0	Х	R	0	0	õ	1	
0	1	Х	R	0	0	1	0	
1	Х	0	R	0	0	0	1	
1	Х	1	R	0	0	1	0	
0	0	Х	0	R	0	0	1	
0	1	Х	0	R	0	1	0	
1	Х	0	0	R	0	0	1	
1	Х	1	0	R	0	1	0	
X	0	0	R	0	0	0	1	
Х	0	0	0	R	0	0	1	
Х	0	1	R	0	0	UNK	NOWN	
Х	0	1	0	R	0	UNK	NOWN	
х	1	0	R	0	0	UNK	NOWN	
X	1	0	0	R	0	UNK	NOWN	
X	1	1	R	0	0	1	0	
Х	1	1	0	R	0	1	0	
Х	Х	х	Х	Х	1	1	0	

)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

FF34	L cell	D FLIP/FLO COMPLEMENT	P WITH AS, ARY Q, QN	AR,	
++ +- ++ +-	-C->Q -C->Q -C->QN -C->QN -C->QN -AS->Q -AS->QN -AR->Q -AR->QN -AR->QN	s 1. 0. 1. 0. 0. 0. 1.	79     0.89       17     1.04       77     0.85       18     1.34       90     1.00       94     1.05	H 0.71 0.68 0.66 0.66 0.86 0.71 0.73 0.79	ns ns ns ns ns ns ns
		1.5 -0.5 0.5 2.6	55 -0.55 90 0.90 86 4.00	0.90 0.05 0.90 1.67	ns min ns min ns min ns min
I FAN~OU	T LOAD LI	2.7 MIT: 9	74 2.38 4	3.19 9	mA loads
k-FACT		G 0.(	4 0.04	0.02 0.04	ns/LU ns/LU
С, А	S, AR - E	ACH MUST BE	DRIVEN BY A	A MACRO	
	AR AS	D C   Qn+1	QNn+1		
	0 1 1 1 0 0 0 0 0 0	X X   0 X X   1 X X   unkr X 0   Qn X 1   Qn 0 R   0 1 R   1	1 0 QNn QNn 1 0		
	AR FFF AR FF34	AR AR F/F AR F/S AR F/S AR	FF34H	-	

6-4-50

(804)

(

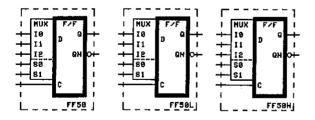
()

AMCC Q5000 MACRO SUMMARY - FFxx (804) ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{0}$ C I = ICC FOR 100% TTL, ELSE I = IEE

FF 35	L cel.	L DFL COM	IP/FLOP WI PLEMENTARY	TH AS, A YQ, QN	R,	
			s	L	н Н	
Tpd +	+C->Q		1.12	0,98	0.51	ns
	-C->Q		0.77	0.84	0.56	ns
	+C->QN		0.77	0.84	0.51	ns
+	-C->QN		1.12	0.98	0.56	ns
С	= 0					
	++AS->(	2	1.39	1.63	0.87	ns
	+-AS->(		1.82	1.54	0.93	ns
	+-AR->(	-	1.39	1.54	0.93	ns
c	++AR->( ≈ 1	2N	1.50	1.74	0.97	ns
C	++AS->(	)	1.93	1.74	0.90	n8
	+-AS->(	-	1.50	1.61	0.97	ns
	+-AR->0		1.93	1.67	0.90	л9 л9
	++AR->(	•	1.82	1.66	0.87	ns
Tsu ()	וח		1.20	1.20	0.60	ns min
	) )		-0.40		0.10	ns min
	(AS, AR)		0.90	0.90	0.90	ns min
EW (C	1,C2,AR)		2.38	3.33	1.39	ns min
I			3.02	2.66	3.69	mA
FAN-OI	JT LOAD	LIMIT:	9	4	9	loads
-FAC	FOR RIS	ING	0.04	0.04	0.02	ns/LU
		LING	0.04	0.08	0.04	ns/LU
С, 1	AS, AR -	EACH MU	IST BE DRI	VEN BY A	MACRO	
AR AS	B DC	Qn+1 C	Nn+1)			
1 (	) X X I	0	· , 1 +		·	,
0 3			ō	AS	AS	AS
1 :	XX		wn -+	- D 0		D 0
	) X O I	Qn		F/F I	F/F	F/F
	) X I İ	Qn	QNn -	- to Mot	+ с енр	c ^{QN}
-	) OR (	0	ĩ	AR	AR	AR
0 (	) 1 R (	1	0 +	I		
			i	F <u>F35</u> ]	FF35L	+F <u>F</u>

)

(804)


(

(

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

FF50 L cell D F/F	WITH 3:1	MUX DATA	INPUT,	Q, QN
Tpd ++C->Q +-C->Q	S 1.01 0.77 1.03	L 0.92 0.83 0.94	H 0.65 0.68 0.66	ns ns
Tpd ++C->QN +-C->QN	0.78	0.84	0.69	ns ns
Tsu (I0,I1,I2) Tsu (S0,S1) Th (I0,I1,I2) Th (S0,S1) PW(C)	1.65 1.95 -0.35 -0.70 2.38	1.30 1.75 -0.35 -0.70 3.33	1.40 1.80 0.20 0.60 1.39	ns min ns min ns min ns min ns min
I	2,29	1.93	3.19	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
k-FACTOR RISING FALLING	0.04 0.04	0.04 0.08	0.02	ns/LU ns/LU

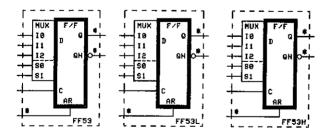
S1, S0 AND C - EACH MUST BE DRIVEN BY A MACRO DATA LATCHED ON RISING EDGE OF C



AMCC Q5000	MACRO SUMMARY	- FFxx	(804)
$TA = 25 \circ C$	ARE TYPICAL AT	' NOMINAL SUPPLY	VOLTAGES
FF50 L ce	ll DF/FWIT	H 3:1 MUX DATA	INPUT, Q, QN
S0 S1 I0 I	1 12 C   Qn+1	QNn+1	
X X X 2	XXI   Ōn	QNn QNn 1	
1 0 X 1 1 0 X 1	X	1 0	
0 1 X X 1 1 X X	XORIO KIRII KXRIUNK		
0 X 0 X X 0 1 1		0 1 0 1	
	v Ki U	T	

()

 $\bigcirc$ 


)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

FF53 L	cell 3:	1 MUX	W/POSI	TIVE EDGE	FLIP/FL	OP
			S	L	Н	
Tpd ++C->(	0		1.31	1.20	0.81	ns
+-C->{	~		1.04			ns
++C->{			0.98			ns
+-C->(				0.96		ns
Tpd +~AR	-		0.95			ns
++AR (	>QN		0.93	0.84	0.54	ns
Tsu (10,1	1,12)		1.60	1.60	1.60	ns min
Tsu (S0,S)	1)		1.80	1.80	1.70	ns min
Th (I0,I1			0.30	0.30	0.30	ns min
Th $(S0,S1)$	)		-0.40	-0.40	-0.40	ns min
Trec			1.80	1.80	1.70	ns min
PW (C,AR)			2.38	3.33	1.39	ns min
I			2.07	1.71	2.75	mA
FAN-OUT LO	DAD LIMIT	:	9	4	9	loads
k-FACTOR	RISING FALLING		0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

* OUTPUT CANNOT BE WIRE-ORED AR, S0, S1 - EACH MUST BE DRIVEN BY A MACRO C MUST BE DRIVEN BY A MACRO

* AR COUNTS AS 2 LOADS



### (804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES  $TA = 25 \circ C$ 

(804)

I = ICC FOR 100% TTL, ELSE I = IEE

#### -----FF53 L cell 3:1 MUX W/POSITIVE EDGE FLIP/FLOP

AR	S0	<b>S</b> 1	10	11	12	С	ł	Qn+1	QNn+1
0	X	X	X	X	X	0		On	ONn
0	Х	Х	Х	X	X	1	i	Qn	QNn
0	0	0	0	Х	X	R	Í.	õ	ī
0	0	0	1	X	Х	R	Ť.	1	0
0	1	0	Х	0	X	R	1	0	1
0	1	0	Х	1	Х	R	Ì.	1	0
0	0	1	Х	Х	0	R	F	0	1
0	0	1	Х	Х	1	R	1	1	0
0	1	1	Х	X	Х	R	1	UNK	IOWN
0	0	Х	1	X	1	R	I.	1	0
0	0	X	0	X	0	R	1	0	1
0	Х	0	1	1	Х	R	1	1	0
0	Х	0	0	0	Х	R	÷.	0	1
1	Х	Х	Х	Х	Х	х	1	0	ī

t

AMCC Q5000 MACRO SUMMARY - FFxx (804) ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250C I = ICC FOR 100% TTL, ELSE I = IEE

FF70 L cell	D F/F OPTIMIZ META~STABLE POSITIVE EI	STATE	AND MAXI	LMUM MTBF
'Tpd ++C->Q +-C->Q +-C->QN ++C->QN ++C->QN	S 0.55 0.57 0.57 0.55	L N O T	H N O T	ns ns ns ns
Tsu (D) Th (D) PW(C) I	1.00 -0.10 1.39 2.79	A V A I L	A V A I L	ns min ns min ns min mA
FAN-OUT LOAD LIN k-FACTOR RISIN FALL:	41T: 9 NG 0.02	Ш	ц	loads ns/LU ns/LU

C MUST BE DRIVEN BY A MACRO

D	с	I	Qn+1	QNn+1
X	0		Qn	QNn
X	1		Qn	QNn
1	R		1	0
0	R		0	1



6-4-56

(804)

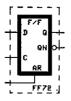
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

FF71 L	ŀ	YF OPTIMIZ ETA-STABLE EGATIVE ED	STATE	AND MAX	MUM MTBP
Tpd -+(C- (C- -+(C- -+(C-	>Q) >QN)	S 0.68 0.71 0.68 0.71	L N O T	H N O T	ns ns ns
Tsu Th PW(C)	· <b>2</b> 417	1.30 -0.20 2.38	A V A	A V A	ns ns min ns min ns min
I		2.79	I L	I L	mA
FAN-OUT LO	DAD LIMIT:	9			loads
k-FACTOR	RISING FALLING	0.02 0.04			ns/LU ns/LU

C MUST BE DRIVEN BY A MACRO

D	С	1	Qn+1	QNn+1
X X 1 0	0 1 F F	!   	Qn Qn 1 0	QNn QNn 0 1

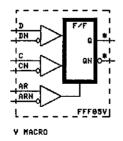



(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

FF72 L	cell	D F/F WIT OPTIMIZED STATE AND EDGE TRIG	FOR MIN	NIMUM M		LE
		S	L	н Н		
Tpd ++C->Q	)	0.65	; –		ns	
+-C->Q		0.62	N	N	ns	
++C->C	N	0.54		0	ns	
+-C->0	N	0.58	Т	Т	ns	
+-AR->	Q	0.76			ns	
++ <u>AR</u> ->	QN	0.59			ns	
			A	A		
Tsu (D)		0.77	-	V	ns	min
Th (D)		-0.07		A	ns	min
Trec (AR)		2.10		I	ns	min
Pw(C)		1.39		L	ns	min
Pw(AR)		1.39			ns	min
I		3.24			mA	
FAN-OUT LO	AD LIMIT:	: 9			load	38
k-FACTOR	RISING	0.02			ns/	'LU
	FALLING	0.04			ns	
		BY A MACR				

AR MUST BE DRIVEN BY A MACRO


AR	D	С	I	Qn+l	QNn+1
0 0 1	DATA DATA X	0 1 X	1   	Qn Qn 0	QNn QNn 1
0	DATA	R	I.	DATA	DATA



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

			ان کا کے ایک کرنے کے ایک کرنے کے ایک کرنے کے ایک کرنے کے ایک کرنے کے ایک کرنے کے ایک کرنے کے ایک کرنے کے ایک ک
FFF05	V 2 L cells	VERY HI-SPEED, DIFFEI	
		WITH DIFFERENTIAL ASY	INCHRUNOUS RESET
		v	
Tpd	++C->Q,QN	0.52	ns
	+-C->Q,QN	0.52	ns
	++AR->Q,QN	0.52	ns
	+-AR->Q,QN	0.52	ns
Tsu	(D)	0.50	ns m <b>in</b>
Thđ	(D)	0.15	ns min
Trec	(AR-,C+)	1.40	ns min
PW	(C,AR)	0.83	ns min
IEE		6.00	πA
FAN-C	UT LOAD LIMIT:	9	loads
INTER	CONNECT PINS:	20	internal
k-FAC	TOR RISING FALLING	0.020 0.020	ns/LU ns/LU

D, DN MUST BE DIFFERENTIALLY DRIVEN FROM ONE MACRO C, CN MUST BE DIFFERENTIALLY DRIVEN FROM ONE MACRO AR, ARN MUST BE DIFFERENTIALLY DRIVEN FROM ONE MACRO *Q,QN OUTPUTS ARE 1/2 SWING (250mV) *Q,QN MUST DRIVE A DIFFERENTIAL INPUT PAIR *Q,QN CANNOT BE WIRE-ORED *Q,QN CANNOT BE POWERED-DOWN

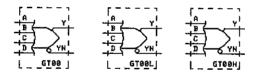


(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

FFF05V 2 L cells VERY HI-SPEED, DIFFERENTIAL D F/F WITH DIFFERENTIAL ASYNCHRONOUS RESET

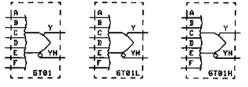
D	DN		AR	ARN	1	с	CN	I.	Qn+1 QNn+1
X X X 0 1 0	X X X 1 0		1 0 1 0 0 0	0 0 1 1 1 1		X X X R R R R	X X X F F F		0 1 UNKNOWN-ILLEGAL UNKNOWN-ILLEGAL 0 1 1 0 UNKNOWN-ILLEGAL
1	1	ļ	0	1		R	F	1	UNKNOWN-ILLEGAL
~	X	1	U	1		1	0		Qn QNn
X	Х	1	0	1		0	1	1	Qn QNn
х	Х	1	0	1	1	0	0	1	UNKNOWN-ILLEGAL
X	Х	I	0	1	Т	1	1	Ì	UNKNOWN-ILLEGAL


 $t^{\prime}$ 

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 250CI = ICC FOR 100% TTL, ELSE I = IEE

GT00 0.5	L cell 4-I	NPUT OR/	NOR		
Tpd ++ A,B Tpd A,B Tpd -+ A,B Tpd +- A,B	, C, D->Y , C, D->YN	S 0.49 0.41 1.00 0.55	L 0.45 0.45 0.88 0.62	H 0.33 0.29 0.44 0.43	ns ns ns ns
I		0.93	0.59	1.13	mA
FAN-OUT LO.	AD LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

 $\mathbf{Y} = \mathbf{A} + \mathbf{B} + \mathbf{C} + \mathbf{D}$  YN


 $YN = \overline{A} + \overline{B} + \overline{C} + \overline{D}$ 

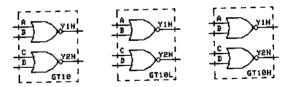


(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT01 L cell 6-INPUT OR/NOR S L Н 0.95 0.86 Tpd ++ A, B, C, D, E, F->Y 0.58 ns Tpd -- A, B, C, D, E, F->Y 0.64 0.71 0.37 ns Tpd +- A, B, C, D, E, F->YN 0.60 0.53 0.27 ns Tpd -+ A, B, C, D, E, F->YN 0.47 0.51 0.43 ns т 1.40 1.04 2.07 mΑ FAN-OUT LOAD LIMIT: 9 4 9 loads **k-FACTOR** RISING 0.04 0.04 0.02 ns/LI 0.04 0.08 FALLING 0.04 ns/LU _____ A, B, C - AT LEAST ONE MUST BE DRIVEN BY A MACRO D, E, F - AT LEAST ONE MUST BE DRIVEN BY A MACRO Y = A + B + C + D + E + F $YN = \overline{A} + \overline{B} + \overline{C} + \overline{D} + \overline{E} + \overline{F}$ 




(804)

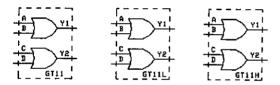
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT10 0.	5 L cell	DUAL 2-INPUT NOR					
		S	L	Н			
	->Y2N	0.60	0.53	0.31	ns		
Tpd +- A,E C,E	)->Y1N; )->Y2N	0.41	0.46	0.33	ns		
I		1.17	0.81	1.62	mА		
FAN-OUT LC	AD LIMIT:	9	4	9	loads		
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU		

 $YIN = \overline{A} + \overline{B}$ 

Y2N = C + D



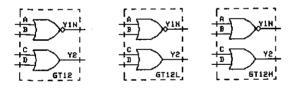

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT11 0.5 I	cell DUAL	2-INPUT	OR		
	>Y1,C,D->Y2 >Y1,C,D->Y2	s 0.46 0.34	L 0.42 0.38	H 0.31 0.26	ns ns
I		1.15	0.79	1.60	mA
FAN-OUT LOF	D LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

_____

YI = A + B

Y2 = C + D



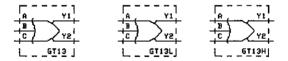

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{0}$ C I = ICC FOR 100% TTL, ELSE I = IEE

GT12 0.5	L cell	2-INPUT NOR;	2-INPUT	OR	
Tpd -+ A,B Tpd +- A,B Tpd ++ C,D Tpd ++ C,D Tpd C,D	->Y1N ->Y2	8 0.60 0.41 0.46 0.34	L 0.46 0.53 0.43 0.38	H 0.31 0.33 0.31 0.26	ns ns ns ns
I		1.15	0.79	1.60	mA
FAN-OUT LO	AD LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

 $YIN = \overline{A} + \overline{B}$ 

Y2 = C + D




(804)

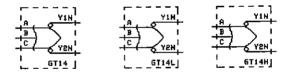
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT13 0.5 L cell 3-IN	PUT OR;	DUAL OUT	PUTS	
	S	L	н	
Tpd A,B,C->Y1,Y2 ++ (1 INPUT CHANGING)	0.54 0.40	0.51 0.45	0.36 0.29	ns ns
Tpd ++ (ANY 2 INPUTS CHANGING)	0.48 0.37	0.42 0.41	0.29 0.30	ns ns
Tpd ++ (ALL INPUTS CHANGING)	0.40 0.34	0.34 0.39	0.23 0.29	ns ns
I	0.95	0.59	1.17	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
K-FACTOR RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

Y1 = Y2 = A + B + C

. _....




(804)

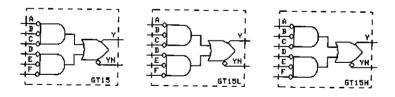
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT14 0.5 I	, cell 3-I	NPUT NOR;	DUAL	OUTPUTS	
Tpd -+ A,B, Tpd +- A,B,	C->Y1N, Y2N C->Y1N, Y2N	S 0.60 0.38	L 0.56 0.41	H 0.32 0.35	ns Ns
I		1.17	0.81	1.62	mA
FAN-OUT LOA	AD LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

A, B, C - AT LEAST ONE MUST BE DRIVEN BY A MACRO

 $Y1N = Y2N = \overline{A} + \overline{B}$ 




(804)

C

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

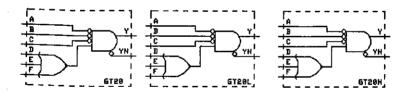
GT15 L cell 2-TERM	3-INPUT	OR-AND/N	AND		
Tpd -+ A, B, C->Y Tpd +- A, B, C->Y Tpd ++ A, B, C->YN Tpd A, B, C->YN Tpd D, E, F->Y Tpd +- D, E, F->Y Tpd ++ D, E, F->YN Tpd D, E, F->YN	S 1.09 0.62 0.46 1.28 0.66 0.92 0.86	L 0.99 0.70 0.59 0.52 1.14 0.74 0.82 0.95	H 0.39 0.31 0.35 0.64 0.53 0.52 0.56	ns ns ns ns ns ns ns ns	
I	1.15	0.79	1.58	mA	
FAN-OUT LOAD LIMIT:	9	4	9	loads	
k-FACTOR RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU	
D, E, F - AT LEAST ONE MUST BE DRIVEN BY A MACRO					

 $Y = \overline{ABC} + \overline{DEF} = \overline{(A + B + C)}\overline{(D + E + F)}$  $YN = \overline{\overline{ABC}} + \overline{\overline{DEF}} = (A + B + C)(D + E + F)$ 



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{0}$ C I = ICC FOR 100% TTL, ELSE I = IEE

GT20 L cell 3-INPUT	OR-AND/N	AND WITH	3 LOW-E	NABLES
Tpd -+ A, B, C->Y Tpd +- A, B, C->Y Tpd ++ A, B, C->YN Tpd A, B, C->YN Tpd A, B, C->YN Tpd ++ D, E, F->Y Tpd D, E, F->Y Tpd -+ D, E, F->YN Tpd +- D, E, F->YN	S 1.30 0.72 0.29 0.34 1.21 0.84 0.67 0.53	L 1.17 0.82 0.25 0.38 1.07 0.96 0.61 0.56	H 0.65 0.47 0.17 0.28 0.63 0.57 0.40 0.44	ns ns ns ns ns ns ns ns ns
I	1.15	0.79	1.58	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
k-FACTOR RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU


D, E, F - AT LEAST ONE MUST BE DRIVEN BY A MACRO

 $Y = \overline{ABC}(D + E + F)$ 

(

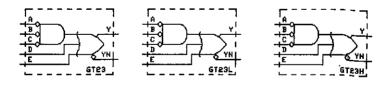
Ć

 $YN = A + B + C + \vec{D}\vec{E}\vec{F}$ 



6-4-69

(804)


)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT23 L cel	1 3-INPU	r nor - 3	-INPUT O	R/NOR	
Tpd -+ A, B, Tpd +- A, B, Tpd ++ A, B, Tpd A, B, Tpd ++ D, E- Tpd D, E- Tpd D, E- Tpd -+ D, E- Tpd +- D, E-	C->Y C->YN C->YN ->Y ->Y ->Y	S 0.65 0.95 0.71 0.35 0.35 0.93 0.52	L 0.60 0.54 0.85 0.79 0.31 0.38 0.83 0.59	H 0.39 0.42 0.53 0.50 0.23 0.28 0.46 0.37	ns ns ns ns ns ns ns ns ns ns ns
I		1.17	0.81	1.62	mA
FAN-OUT LOF	AD LIMIT:	9	4	9	loads
k-factor	RISING FALLING	0.04 0.04	0.04 0.08	0.02	ns/LU ns/LU

A, B, C - AT LEAST ONE MUST BE DRIVEN BY A MACRO

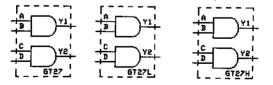
 $Y = (\overline{A} \ \overline{B} \ \overline{C}) + D + E = (\overline{A} + \overline{B} + \overline{C}) + D + E$  $YN = \overline{Y}$ 



AMCC (	25000	MACRO	SUMMARY	-	GTXX
--------	-------	-------	---------	---	------

(

(804)

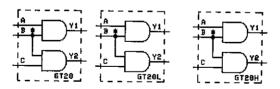

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES  $TA = 25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT27	0.5	5 L cell	DUAL 2-IN	PUT AND		
			S	 L	н	
Tpd	++ A-)	>Y1	0.66	0.60	0.38	ns
	A-)	>Y1	0.41	0.45	0.31	ns
	++ B-)	>Y1	0.76	0,70	0.48	ns
	B-X	>Yl	0.60	0.65	0.49	ns
	++ C->	>Y2	0,54	0.49	0.33	ns
	C-X	>Y2	0.36	0.40	0.27	ns
	++ D-)	>Y2	0.64	0.59	0.44	ns
	D-)	>¥2	0.54	0.5 <b>9</b>	0.45	ns
	TWO IN	PUTS SWITC	HING:			
Tpd	++ A, H	3->Yl	0.80	0.73	0.50	ns
	A, H	3->Yl	0.53	0.57	0.38	ns
	++ C,I	D->Y2	0.68	0.62	0.45	ns
	C,I	D->Y2	0.48	0.52	0.35	ns
I			1.62	1.26	2.07	mA
FAN-	OUT LOP	AD LIMIT:	9	4	9	loads
k-FA	CTOR	RISING FALLING	0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

B, D - EACH MUST BE DRIVEN BY A MACRO

Yl = AB

¥2 = CD

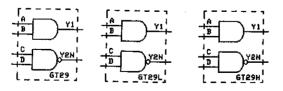



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT28 0.5 L cell	DU AL	2-INPUT	AND,	ONE INPUT	COMMON
		S	L	н Н	
Tpd ++ A->Yl		0.66	0.59		ns
A->Y1		0.41	0.46	0.31	ns
Tpd ++ B->Yl		0.78	0.70	0.49	ns
B->Yl		0.66	0.72	0.50	ns
Tpd ++ B->Y2		0.66	0.60	0.45	ns
B->Y2		0.61	0.65	0.47	ns
Tpd ++ C->Y2		0.54	0.49	0.33	ns
C->Y2		0.36	0.40	0.27	ns
BOTH CHANG	ING:				
Tpd ++ A,B->Yl		0.81	0.73	0.51	ns
A, B->Y1		0.54	0.58		ns
Tpd ++ B, C->Y2		0.68	0.62	0.46	ns
B,C->Y2		0.48	0.53	0.36	ns
I		1.39	1.03	1.84	πA
FAN-OUT LOAD LIMI	Τ:	9	4	9	loads
k-FACTOR RISING FALLI	-	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

* B COUNTS AS 1 LOAD B MUST BE DRIVEN BY A MACRO

Y1 = AB Y2 = BC

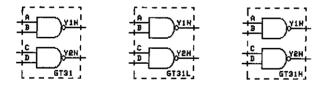



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

2-INPUT AND,	2-INPUT	NAND	
S	L	н	
0.54	0.49	0.33	ne
0.36	0.40	0.27	ns ns
0.54	0.59	0.45	ns ns
0.40	0.36	0.24	ns
0.61	0.56	0.38	ne ne
		0.45	ne ne
0.68	0.72	0.53	ns ns
1.62	1.26	2.07	mA
9	4	9	loads
0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU
	S 0.54 0.36 0.64 0.54 0.34 0.40 0.57 0.61 0.68 0.48 0.48 0.68 0.36 1.62 9 0.04	S         L           0.54         0.49           0.36         0.40           0.64         0.59           0.54         0.59           0.34         0.37           0.40         0.36           0.57         0.61           0.61         0.56           0.68         0.62           0.48         0.52           0.68         0.72           0.36         0.32           1.62         1.26           9         4           0.04         0.04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* B, D - EACH MUST BE DRIVEN BY A MACRO

Y1 = AB  $Y2N = \vec{C}\vec{D} = \vec{C} + \vec{D}$ 

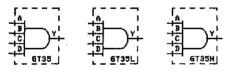



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT31 0.5 L	cell DUAL	2-INPUT	NAND		
Tpd -+ A->Y +- A->Y Tpd -+ B->Y +- B->Y Tpd -+ C->Y +- C->Y Tpd -+ D->Y +- D->Y	1N 1N 1N 2N 2N 2N	S 0.34 0.32 0.71 0.64 0.39 0.34 0.60 0.57	L 0.30 0.36 0.65 0.68 0.35 0.37 0.55 0.60	H 0.20 0.27 0.43 0.49 0.24 0.28 0.38 0.46	ns ns ns ns ns ns ns ns
I		1.60	1.26	2.08	mA
FAN-OUT LOAD	D LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

B,D - EACH MUST BE DRIVEN BY A MACRO

 $YIN = \overline{AB} = \overline{A} + \overline{B}$   $Y2N = \overline{CD} = \overline{C} + \overline{D}$ 



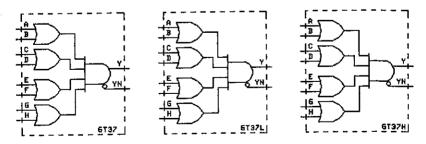

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT35 L	cell 4-INPU7	AND			
Tpd ++ A,1 A,1 Tpd ++ D-: D-:	в, с->Y >Y	8 0.90 0.80 0.99 1.04	L 0.86 0.84 0.95 1.08	H 0.57 0.58 0.62 0.71	ກຣ ກຣ ກຣ ກຣ
I		1.71	1.53	3.06	mA
FAN-OUT LO	DAD LIMIT:	9	4	9	loads
k-FACTOR	RIS ING FALL ING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

Y = ABCD

(




ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT37	L	cell	QUAD	2-INPUT	OR - 4	-INPUT AN	D/NAND
				S	L	н	
Tpd ++	Α,	B, C, D	->Y	1.01	0.9	6 0.64	ns
Tpd				1.12	1.1	7 0.74	ns
Tpd -+	A	B.C.D	->YN	1.26	1.2	3 0.77	ns
Tpd +-				0.93	0.9	7 0.63	ns
Tpd ++				1.01	0.9	7 0.63	ns
Tpd				1.09	1.1	4 0.73	ns
Tpd -+				1.24	1.2	0 0.76	ns
Tpd +-	E	F->YN		0.94	0.9	8 0.62	ns
Tpd ++	G	H->Y		1.16	1.1		
Tpd	G	H−>Х		1.34	1.4	0 0.87	ns
Tpd -+	G	H->YN		1,50	1.4	6 0.93	ns
Tpd +-				1.06	1.1	0 0.70	ns
I				2.07	1.7	1 3.42	mA
FAN-OU	ΤI	LOAD L	IMIT:	9	4	9	loads
k–FACT	OR		S ING LL ING	0.04 0.04	0.0 0.0		

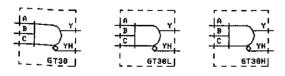
Y = (A + B) (C + D) (E + F) (G + H)

 $YN = \overline{Y}$ 

( )



-


(

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

	S	L	н	
Tpd ++ A->Y	0.75	0.67	0.43	ns
Tpd A->Y	0.47	0.53	0.34	ns
Tpd -+ A->YN	0.38	0.34	0.22	ns
+- A->YN	0.34	0.38	0.28	ns
++ B->Y		0.74		nв
B->Y		0.83		ns
-+ B->YN	0.61	0.55		ns
+- B->YN	0.48	0.52		ns
++ C->Y	1.01	0.92	0.68	ns
C->Y	1.02	1.10	0.62	ns
-+ C->YN		0.75	0.45	ns
+- C->YN	0.65	0.68	0.61	ns
I ·	1.35	0.99	1.98	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
k-FACTOR RISING	0.04	0.04	0.02	ns/LU
FALLING	0.04	0.08	0.04	ns/LU

Y = ABC

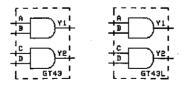
 $YN = \overline{ABC} = \overline{A} + \overline{B} + \overline{C}$ 



(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT43	0.5 L ce	11	DUAL 2-IN	PUT AND		
_			S	L	н	
•	A,B->Yl (	1)	0.63			ns
	A,B->Yl		0.38	0.43		ns
	A,B->Yl (	2)	0.94			ns
-	A, B->Yl		0.25	÷ •		ns
-	C->¥2 (	1)	0.75			hs
	C->Y2		0.43			ns
•	)->¥2 (	1)	0.74	0.66		ns
-	)->Y2		0.41			ns
	C,D->Y2 (	2)	1.10			ns
(	C,D->Y2		0.27	0.30		ns
I			1.62	1.26		mA
FAN-OUT	LOAD LIM	IT:	9	4		loads
k-FACTOF	RISI	NG	0.04	0.04		ns/LU
	(FALL	ING	0.04	0.08		ns/LU


* B,D - EACH MUST BE DRIVEN BY A MACRO

(1) INPUTS SWITCHING GREATER THAN OR EQUAL TO Ins OF EACH OTHER.

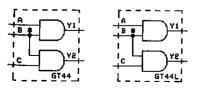
(2) INPUTS SWITCHING LESS THAN lns OF EACH OTHER.

• NO H-OPTION

#### Y1 = AB Y2 = CD



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE


GT44 0.5	L cell	DUAL	2-INPUT	AND,	ONE	INPUT	COMMON
			S	L		н	
	JT CHANG	ING)					
Tpd ++ A-:	>Yl		0.74	0.66	5		ns
A-2			0.43	0.49	)		ns
Tpd ++ B-:	>Y1		0.78	0.70	)		ns
B-:			0.47	0.52			ns
Tpd ++ B-;	>Y2		0.95	0.85	i		ns
B-:			0.58	0.66			ns
Tpd ++ c-:	>Y2		0.92	0.84			ns
C-)	>¥2		0.52	0.60	I		ПБ
(2 INP	JTS CHAN	GING)					
Tpd ++ A,1	3->¥1		1.13	1,06			ns
A,1			0.31	0.35	;		ns
Трd ++ в, (	C->Y2		1.38	1.29	)		ns
B,	C->Y2		0.34	0.38	\$		ns
I			1.85	1.49	)		mA
FAN-OUT LO	DAD LIMI	T:	9	4			load
k-FACTOR	RISIN FALLI	-	0.04	-			ns/L ns/L
	5400 U	no.	V.U4	0.00	,		110/1

* B COUNTS AS 1 LOAD B MUST BE DRIVEN BY A MACRO

NO H-OPTION

Y1 = AB

Y2 = BC



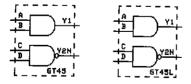
(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT45 0.5 L cell	2-INPUT AND,	2-INPUT	NAND
Tpd ++ A, B->Y1 (1 A, B->Y1 ++ A, B->Y1 (2 A, B->Y1	0.47 ) 1.25 0.40	L 0.76 0.54 1.17 0.33	H ns ns ns ns
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0.40 () 0.69 0.36	0.38 0.36 0.73 0.31 0.60 0.56	ns ns ns ns ns ns
I	1.62	1.26	mA
FAN-OUT LOAD LIMI	T: 9	4	loads
k-FACTOR RISIN FALLI	-	0.04 0.08	ns/LU ns/LU

______

* B,D - EACH MUST BE DRIVEN BY A MACRO


(1) INPUTS SWITCHING GREATER THAN OR EQUAL TO lns OF EACH OTHER.

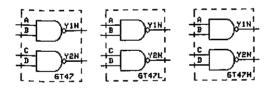
(2) INPUTS SWITCHING LESS THAN 1ns OF EACH OTHER.

• NO H-OPTION

#### Y1 = AB

 $Y2N = \overline{CD}$ 




ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{\circ}$ C I = ICC FOR 100% TTL, ELSE I = IEE

GT47 0.	5 L Cell	DUAL 2-IN	PUT NANE	)	
Tpd +- B D	->Y1,Y2N	S 0.34 0.39 0.57 0.61	L 0.37 0.35 0.60 0.56	H 0.28 0.24 0.46 0.39	ns ns ns ns
I		0.81	0.63	0.70	mA
FAN-OUT LO	AD LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

B, D - EACH MUST BE DRIVEN BY A MACRO

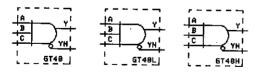
# $YIN = \overline{A}\overline{B}$

 $Y2N = \overline{CD}$ 



(804)

(


ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT48	0.5 L cell	3-INPUT	AND/NAND		
		s	L	H	
Tpd ++	A->Y	0.75	0.67	0.35	ns
	A->Y	0.47	0.53	0.30	ns
- ++	В->Х	0.83	0.74	0.43	ns
	B->Y	0.74	0.83	0.46	ns
++	C->Y	1.01	0.92	0.58	ns
	C->Y	1.02	1.10	0.50	ns
	A->YN	0.34	0.38	0.26	ns
Tpd -+		0.38	0.34	0.19	ns
-	B->YN	0.48	0.52	0.41	ns
	B->YN	0.61	0.55	0.35	ns
	C->YN	0.65	0.68	0.59	ns
	C->YN	0.81	0.75	0.40	ns
	A, B, C->Y	0.72	0.75	0.62	ns
	A, B, C->Y	0.77	0.87	0.62	ns
	A, B, C->Y	0.72	0.75	0.62	ne
-+	А, В, С->Ү	0.34	0.30	0.14	ns
I	1	1.35	0.99	2.07	mA
FAN-OU!	T LOAD LIMIT:	9	4	9	loads
k-FACT(	OR RISING	0.04	0.04	0.02	ns/LU
	FALLING	0.04	0.08	0.04	ns/LU

B, C - EACH MUST BE DRIVEN BY A MACRO

Y = ABC

 $YN = \overline{A}\overline{B}\overline{C} = \overline{A} + \overline{B} + \overline{C}$ 



(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT50D	0.5 L cell	3-INPUT NOR D	RIVER
	A, B, C->YN A, B, C->YN	DRIVER 0.39 0.55	DB NB
I		1.17	mA
FAN-OUT	LOAD LIMIT:	15	loads
k-FACTC	R RISING FALLING	0.02 0.02	ns/LU ns/LU

OUTPUT CANNOT BE WIRE-ORED

YN = A + B + C



6-4-83

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT51D	0.5 L cell	3-INFUT OR DRIVER	
	А, В, С->Y А, В, С->Y	DRIVER 0.34 0.28	ns ns
I		1.17	mA
FAN-OU I	LOAD LIMIT:	15	loads
k-FACTO	PR RISING FALLING	0.02 0.02	ns/LU ns/LU

OUTPUT CANNOT BE WIRE-ORED

Y = A + B + C

___<u>GT51</u>D

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

GT52D	0.5 L cell	2-INPUT NAND DRIV	ER
		DRIVER	
Tpd +-A->	(N	0.05	ns .
-+A->:	(N	0.31	ns 🗉
Tpd +-B->	(N	0.49	ns
-+B->:	(N	0.43	nġ
I		1.62	mA
FAN-OUT LO	DAD LIMIT:	15	loads
k-FACTOR	RISING	0.02	ns/LU
	FALLING	0.02	ns/LU

B MUST BE DRIVEN BY A MACRO OUTPUT CANNOT BE WIRE-ORED

 $YN = \overline{AB}$ 

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

GT54D	L cell INV	BRTING SUPER-DRI	VER
		DRIVER	
Tpd +- A-		0.32	ns
Tpd -+ A-	>YN	0.29	ns
I		3.96	mA
FAN-OUT LO	DAD LIMIT:	25	loads
k-FACTOR	RISING FALLING	0.01 0.01	ns/LU ns/LU

OUTPUT CANNOT BE WIRE-ORED OUTPUT MAY BE POWERED-DOWN

 $YN = \tilde{A}$ 



(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT5 5D	L cell	NON. THURDRENG		
G155D	T CGIT	NON-INVERTING	SUPER-DRIVER	
		DRIVER		
Tpd ++ ;		0.40		ns
Tpd i	A->Y	0.26		ns
I		3.96		mA
FAN-OUT	LOAD LIM	IT: 25		loads
k-FACTO	R RISI FALL			ns/LU ns/LU

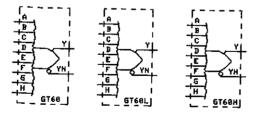
A MUST BE DRIVEN BY A MACRO

OUTPUT CANNOT BE WIRE-ORED

Y = A

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE


GT56D 0.5 L cel	1 2-INPUT OR/NOR DRIVE	R						
DRIVER								
Tpd ++ A,B->Y	0.35	ns						
Tpd A, B->Y	0.28	ns						
Tpd +- A, B->YN	0.38	ns						
Tpđ ++ A,B->YN	0.46	ns						
I	1.89	MA						
FAN-OUT LOAD LIMI	IT: 15	loads						
k-FACTOR RISIN	G 0.02	ns/LU						
FALLI		ns/LU						
OUTPUT CANNOT E OUTPUT MAY BE E	BE WIRE-ORED							

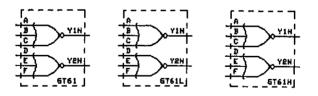
Y = A + B  $YN = \overline{A} + \overline{B} = \overline{AB}$ 



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

GT60	L cell	8-INPUT	OR/NOR			
Tpd:			8	L	н	
-			0.07	A AA		
	B, C, D, E, F		0.97	0.88	0.61	ns
		',G,H->Y		0.74	0.39	ns
A,	B, C, D, E, F	,G,H->YN	0.54			ns
-+A,	B, C, D, E, F	G,H−>YN	0.81	0.72	0.35	ns
I			1.62	1.26	2.52	mA
FAN-OU	T LOAD LI	MIT:	9	4	9	loads
k-FACT	OR RIS	ING	0.04	0.04	0.02	ns/LU
	FAL	LING	0.04	0.08	0.04	ns/LU
		AST ONE !	IUST BE	DRIVEN BY	Y A MACRO	0
	F - AT LE	ast one 1	WST BE	DRIVEN BY	A MACR	0
G,H	- AT LE	AST ONE I	WST BE	DRIVEN BY	Y A MACRO	0
NOTE :	THE ABOV	E SPECS A	RE FOR	l INPUT (	CHANG ING	•
Y = A -	+ B + C +	D + E +	F + G +	н		
$YN = \overline{A}$	+ B + C	+ D + E 4	F + G	ŦŦĦ		




6-4-89

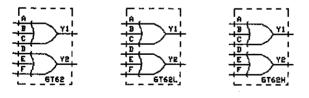
(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oCI = ICC FOR 100% TTL, ELSE I = IEE

GT61 L C	ell DUAL 3-	INPUT NO	R		
Tpd A, B, C D, E, F		8	L	H	
+- (Al	NY 1 INPUT	0.47	0.53	0.37	ns
	HANGING)	0.80	0.70	0.37	ns
	NY 2 INPUTS	0.49	0.56	0.35	ns
	AANGING)	0.92	0.83	0.45	ns
	NY 3 INPUTS	0.57	0.64	0.37	ns
	HANGING)	1.03	0.93	0.52	Ne
I		1.17	0.81	1.62	mA
FAN-OUT L	DAD LIMIT:	9	4	9	loads
k-FACTOR	RISING	0.04	0.04	0.02	ns/LU
	FALLING	0.04	0.08	0.04	ns/LU

 $YIN = \overline{A} + \overline{B} + \overline{C}$   $Y2N = \overline{D} + \overline{E} + \overline{F}$ 




(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT62 L cell DUAL 3-INPUT OR _____ -------8 L H Tpd A, B, C->Y1  $D, E, F \rightarrow Y2$ ++ (ANY 1 INPUT 0.46 0.43 0.31 ns CH ANG ING) 0.37 ___ 0.41 0.27 nø ++ (ANY 2 INPUTS 0.37 0.34 0.23 ns CHANGING) 0.34 0.38 0.27 --ns ++ (ANY 3 INPUTS 0.30 0.26 0.18 ns CHANGING) 0.32 0.35 0.27 ns Ι 1.17 0.81 1.62 mΆ FAN-OUT LOAD LIMIT: 9 4 9 loads **k-FACTOR** RISING 0.04 0.04 0.02 ns/LU FALLING 0.04 0.08 0.04 ns/LU

Y1 = A + B + C

Y2 = D + E + F



~ -

Ć

(

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT6 4	L Ce		FFERENTIAL MACRO TO N			
			8	L	Н	
	, AN->Y ) (++	(,YN -)(-+)(+-)	0.32	0.34	0.24	ns
IEE			0.95	0.58	1.17	mA
FAN-O	UT LOP	D LIMIT:	9	4	9	loads
k-FAC	TOR	RISING FALLING		0.04 0.08		ns/LU ns/LU
	n - Mu	ST BE DI	BE DRIVEN FFERENTIAL VN =	LY DRIVEN	-	
Α,Α	N - MU Y =		FFERENTIAL YN =	LY DRIVEN	-	
Α,Α	N - MU Y =	ST BE DI	FFERENTIAL YN == L	LY DRIVEN	-	
A, A A IAN - <u>A</u> -0	N - MU $= dif$ $AN$ $0$	A A AN ferentia Y UNK	FFERENTIAL YN = YN NOWN ILL	LY DRIVEN	-	
A, A A IAN <u>A</u> 0	N - ML $= dif$ $AN$ $0$ $1$	A A AN ferentia	FFERENTIAL YN = L YN	LY DRIVEN ATAN	-	
A, A A IAN <u>A</u> 0	N - MU $= dif$ $AN$ $0$	A A AN ferentia: Y UNKI 0 1 1	FFERENTIAL YN = L YN  NOWN ILL 1	LY DRIVEN ATAN Egal	-	

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

 GT66D	L cell	DIFFERENTIAL 25 V MACRO TO NON-	-LOAD DRIVER V MACRO CONVERSION
		D	
Tpd ++ A->	УY	0.24	ns
A->	УY	0.23	ns
Tpd -+ AN-	->Y	0.24	ns.
" +- AN-	->Y	0.23	ns
I		3.51	mA
<b>k-FACTOR</b>	RISING	0.01	ns/LU
	FALL ING	0.01	ns/LU
FAN-OUT LO	DAD LIMIT:	25	loads

OUTPUT CANNOT BE WIRE-ORED A, AN EACH MUST BE DRIVEN BY A MACRO A, AN MUST BE DIFFERENTIALLY DRIVEN

 $Y = A | \overline{A} \overline{N}$ 

A	AN	1	Y
0	0		UND
0	1		0
1	0		1
1	1	Ι	UND



(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

GT67V L c		I-SPEED TRANSLATOR DRIVE MACRO TO V MACRO	 R
Tpd A->Y,Y		v	
	·-) (-+) ()	0.24	ns
I		1.89	mA
FAN-OUT LOA	D LIMIT:	15	loads
k-FACTOR	RISING FALLING	0.020 0.020	ns/LU ns/LU

*Y,YN OUTPUTS ARE 1/2 SWING (250mV) *Y,YN MUST DRIVE A DIFFERENTIAL INPUT PAIR *Y,YN CANNOT BE WIRE-ORED *Y,YN CANNOT BE POWERED-DOWN

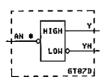
$$Y = A$$
  
 $YN = \overline{A}$ 

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

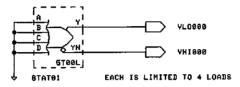
GT86 L cell	4-STAGE GA	FE DELAY;	2-STAGE	GATE DELAY
Tpd ++ A1->Y1 A1->Y1 Tpd ++ A2->Y2 A2->Y2	1 0	L .60 .52 .81 .73	H	ns ns ns ns
I	2	.97		mA
FAN-OUT LOAD I	IMIT: 9			loads
		.04 .04		ns/LU ns/LU

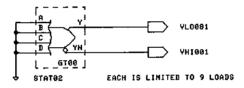
• NO OPTIONS

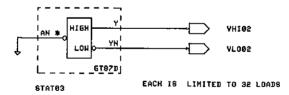

 $Y1 = A1 \qquad Y2 = A2$ 



AMCC Q5000 MACRO SUMM	ARY - GTxx	(804)				
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE						
GT87D 0.5 L cell S	TATIC HIGH - STATIC	LOW DRIVER				
	DRIVER					
Tpd DOES NOT AP THE INPUT NEVER	PLY TO THIS MACRO S CHANGES	INCE				
I	1.89	mA				
FAN-OUT LOAD LIMIT:	32	loads				
k-FACTOR RISING FALLING	STATIC STATIC	ns/LU ns/LU				
A MUST BE TIED TO GROUND A MUST NOT BE DRIVEN BY A MACRO OUTPUT MAY NOT BE WIRE-ORED OUTPUT MAY BE POWERED-DOWN						
This driver is used to supply a static "1" or a static "0" to drive those macro input pins that are UNUSED in a given circuit but must be DRIVEN BY A MACRO. Use when an L-option (4 LOADS) or S-option (9 LOADS) simple OR/NOR gate cannot be used.						
Y = "l" $YN = "0"$	NAME THIS SIGNAL "VI NAME THIS SIGNAL "VI	BIxxx" LOxxx"				
where "xxx" is 1 to 3 mixed such as: VHI001 VLO002	VHILA	s or numbers or				


(


These signals are static (do not switch) and must be accounted for in any fault-grading analysis in the same manner as a grounded or terminated signal.




ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

STATIC DRIVING SCHEMES:







DO NOT USE A 15-LOAD OR 25-LOAD DRIVER MACRO Do not use an h-option macro do not drive V macros

AMCC Q5000	MACRO SUMMARY - GTxx	(804)
ALL VALUES $TA = 25 \circ C$	ARE TYPICAL AT NOMINAL ST	UPPLY VOLTAGES
	100% TTL, ELSE I = IEE	

GT91V L c	ell VERY H AND/NA	I-SPEED	DI FFERENTIAL - IN PUT
		V	
Tpd ++A->Y A->Y ++B->Y B->Y +-A->YN -+A->YN +-B->YN +-B->YN		0.23 0.23 0.35 0.36 0.23 0.23 0.35 0.36	ns ns ns ns ns ns ns
r		2.60	mA
FAN-OUT LOAT	D LIMIT:	9	loads
k-FACTOR	RISING FALLING	0.020 0.020	ns/LU ns/LU

A, AN, B, BN - EACH MUST BE DRIVEN BY A MACRO A, AN MUST BE DIFFERENTIALLY DRIVEN FROM ONE MACRO B, BN MUST BE DIFFERENTIALLY DRIVEN FROM ONE MACRO *Y,YN OUTPUTS ARE 1/2 SWING (250mV) *Y,YN MUST DRIVE A DIFFERENTIAL INPUT PAIR *Y,YN CANNOT BE WIRE-ORED *Y,YN CANNOT BE POWERED-DOWN

	Y = A	AND B A, B	are differential
	YN = Ă	AND B	
A AN B BN Í	Y I	YN	A N
0 0 X X i 0 1 0 1 J X X 0 0 I 1 0 1 0 J 1 1 X X I	UND 1 0 1 UND 1 0 1 UND 1	UND ILLEGAL 1 UND ILLEGAL 1 UND ILLEGAL	
1010   XX11   0101	1   UND   0	0 UND ILLEGAL 1	

AMCC Q50	00 MACRO	SU MMAR Y	-	GTXX
----------	----------	-----------	---	------

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

GT92V L C		II-SPEED OR/NOR	DIFFERENTIAL-INPUT
		v	
Tpd ++A->Y		0.23	ns
A->Y		0.23	ns
++B->Y		0.35	ns
B->Y		0.36	ns
+-A->YN		0.23	ns
-+A->YN		0.23	ns
+-B->YN		0.35	ns
-+B->YN		0.36	ns
I		2.60	mA
FAN-OUT LOAD	D LIMIT:	9	loads
k-factor	RISING FALLING	0.020 0.020	ns/LU ns/LU

A, AN, B, BN - EACH MUST BE DRIVEN BY A MACRO A, AN MUST BE DIFFERENTIALLY DRIVEN FROM ONE MACRO B, BN MUST BE DIFFERENTIALLY DRIVEN FROM ONE MACRO *Y,YN OUTPUTS ARE 1/2 SWING (250mV) *Y,YN MUST DRIVE A DIFFERENTIAL INPUT PAIR *Y,YN CANNOT BE WIRE-ORED *Y,YN CANNOT BE POWERED-DOWN

$$Y = A + B$$

$$YN = \overline{A} + \overline{B}$$

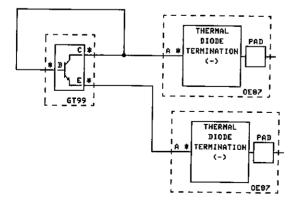
A	AN	В	BN	I	Y	ł	YN	
0	0	x	X	!	UND	1	UND	ILLEGAL
x	x	0	0	ļ	UND	ŀ	עע	ILLEGAL
1	0 1	X	0 X	1	UND		UND	ILLEGAL
X	0 X	1 1	0 1	1	1 UND	1	0 UND	ILLEGAL
0	1	0	1	Ι	0	Ι	1	

A AN B B B C ST92Y

AMCC Q5000 MACRO SUMMARY - GTxx (804) ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

(

GT99 L cell MINIMUM SIZE TRANSISTOR FOR USE AS A THERMAL DIODE S L H I 3.30 mA B MUST BE DRIVEN BY A MACRO


CONNECT OUTPUTS TO TWO OE86 OUTPUT MACROS CONNECT IN C-B SHORT DIODE CONFIGURATION

• NO OPTIONS

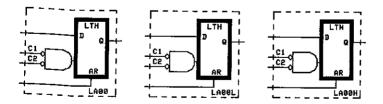
C=B OR "1" E=B OR "1"



THERMAL DIODE



AMCC	Q5000	MACRO	SUMMARY	-	T.Axx
	20000	LUCIO.	DOLUMULT	_	


 $\left( \right)$ 

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE

(804)

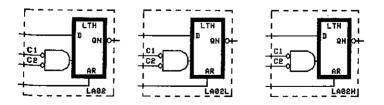
LA00 0.5 L cell D-I LOW	LATCH WIT	H ASYNC. RENT	RESET,	
	S	L	н	
TpdD->Q	0.54	0.63	0.39	ns
-+D->Q	0.97	0.86	0.50	ns
TpdC1, C2->Q	0.93	1.03	0.64	ns
-+C1, C2->Q Tpd AR->Q	1.03		0.57	ns
+-transparent,D=1	0.88	0.96	0.67	ns
+-latched 1		1.04		ns
-+transparent,D=1	1.19			ns
Tsu (high data)	0.80	0.60	0.30	ns min
(low data)	1.10			ns min
Th (high data)	-0.10	-0.10		ns min
(low data)	0.10	0.00		ns min
Trec	1.40			
PW (C1,C2)	2.38	3.33	1.39	
PW (AR)	2.38	3.33		ns min
I	1.49	1.30	1.71	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
k-FACTOR RISING FALLING	0.040 0.040			ns/LU ns/LU

C1, C2 - AT LEAST ONE MUST BE DRIVEN BY A MACRO AR MUST BE DRIVEN BY A MACRO



(804)

)


ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

LAOO	0.5 L	cell		TCH W		. RESET,	
	AR	C1	C2	D	I	Q	
	0	1 X	X 1	X X	   	Qn On	
	0	0 0	0 0	1	Ì	1 0	TRANSPARENT TRANSPARENT
	1	Х	Х	х	i	0	

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

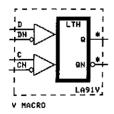
	ATCH, WI -TRANSPA	th ASYNC RENT	RESET,	
	 S	L	н	
Tpd -+D->QN	0.77	0.68	0.38	ns
+-D->QN	0.51	0.57	0.39	ns
Tpd -+C->QN	0.94	0.85	0.53	ns
c->QN	0.73	0.80	0.56	ns
Tpd AR->QN				
++transparent,D=1	1.21	1.10	0.70	ns
transparent,D=1	0.91	0.98	0.72	ns
++latched 1	1.08	1.00	0.68	ns
Tsu (low data)	1.0	1.0	0.6	ns min
(high data)	2.5	2.5	1.0	ns min
Th (low data)	0.3	0.3	0.1	ns min
(high data)	0.0	0.0	0.2	ns min
Trec	1.0	1.0	1.0	ns min
PW (C1,C2)	2.38	3.33	1.39	ns min
PW (AR)	2.38			ns min
I	1.49	1.32	1.71	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
K-FACTOR RISING	0.040	0.040	0.020	ns/LU
FALLING	0.040	0.080	0.040	ns/LU

Cl,C2 - AT LEAST ONE MUST BE DRIVEN BY A MACRO AR MUST BE DRIVEN BY A MACRO



(804)

(804)


()

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

LA02	0.5 L	cell				, with ASY NSPARENT	NC. RESET,
	AR	D	C1	C2	I	QNn+1	
	1 0 0 0 0	X 0 1 X X	X 0 0 X 1	X 0 0 1 X	     	1 1 0 QNn QNn	TRANSPARENT TRANSPARENT

AMCC Q500	0 MACRO S	JMMARY - LAxx	(804)
ALL VALUE: $TA = 25 \circ C$	S ARE TYP:	ICAL AT NOMINAL SUP	PLY VOLTAGES
I = ICC F(	OR 100% T	PL, ELSE I = IBE	
LA91V		VERY HI-SPEED, DIF DIFFERENTIAL CLOCK	
		V	
Tpd ++D->(	0	0.26	ns.
D->(	0	0.26	ns
+-D->	ON	0.26	ns
-+D->	QN	0.26	ns
++C->	Q	0.36	ns
C->(		0.36	ns
+-C->	QN	0.36	ns ns
-+C->	<u>N</u>	0.36	115
Tsu (DiDN	۱.	0.11	ns min
Th (DIDN	5	0.20	ns min
PW (CICN	, )	0.83	ns min
	•		
I		3.75	mA
FAN-OUT L	OAD LIMIT	: 9	loads
K-FACTOR	DTOTNO	0 020	ng/LII
A PACIOR			ns/LU
k-FACTOR	RISING FALLING	0.020	ns/LU ns/LU

*Q,QN OUTPUTS ARE 1/2 SWING (250mV) *Q,QN MUST DRIVE A DIFFERENTIAL INPUT PAIR *Q,QN CANNOT BE WIRE-ORED *Q,QN CANNOT BE POWERED-DOWN



(

ţ

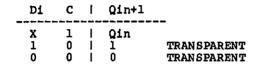
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

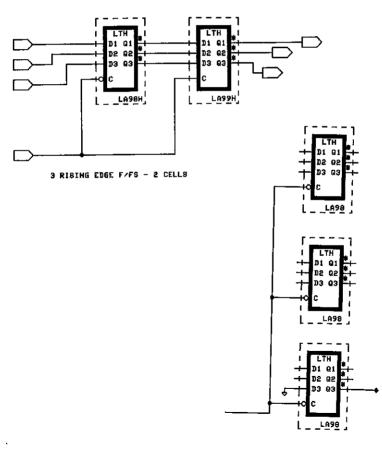
LA91V L cell VERY HI-SPEED, DIFFERENTIAL DATA, DIFFERENTIAL CLOCK, TRANSPARENT HIGH

(804)

(

D	DN	С	CN	ļÇ	)n+1	1	QNn+1	
0	1	1	0	ļ	0	ļ	1 UND	ILLEGAL
0 1	0 0	1 1	0 0	İ	UND 1	ļ	0	<b></b>
1	1	1	0	1	UND		UND	ILLEGAL
DATA DATA	DATA	0 0	1 0	1	Qn UND	1	QNn UND	ILLEGAL
DATA	DATA	1	1	1	UND	i	UND	ILLEGAL
UND = (	undefi	n <b>e</b> đ						


( )


ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

****						
LA98	B L cell	TRIPLE D	LATCH,	WITH CON	IMON CLOC	CK.
			 S	 L	н Н	
Tpd	++ D1->Q1		0.86	0.78	0.47	ne
	D1->Q1		0.50		0.37	ns
Tpd	++ D2->Q2		0.99 0.55	0.89 0.65	0.55 0.41	ns
Tha	D2->Q2 ++ D3->Q3		0.85	0.05	0.41	ns ns
тра	D3->Q3		0.49	0.57	0.37	ns
Tpđ	C->Q1		0.87	0,96	0.56	ពន
-	-+ C->Q1			0.94		ns
Tpđ	C->Q2		0.92	1.04 1.06	0.60	ns
Пт. 4	-+ C->Q2 C->Q3		1.16	0.94		ns ns
тра	-+ C->03		1.02	0.93	0.58	ns
	-+ C->Q3		1.02	0.55		
man.	(0. ) 01. 02	021	0.70	0.70	0.20	ns min
	(C->Q1,Q2, (C->Q1,Q2,		0.10	0.10	0.30	ne min
PW	(C)	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	2.38	3.33	1.39	ns min
I			2.65	2.11	3.50	mA
FAN-	-OUT LOAD I	IMIT:	9	4	9	loads
k~F∕	ACTOR RIS	SING	0.040	0.040	0.020	
	FAI	LING	0.040	0.080	0.040	ns/LU
 C	MUST BE DE	RIVEN BY A	MACRO			
* Q]	, Q2, Q3 M	AY NOT BE	WIRE-O	RED		
	, Q2, Q3 M			D-DOWN		
T	RANSPARENT	TOM CLOCK				
		·		r <b>-</b> -	• •	
		╎┎┯	1 TH .1	LTH	L	
	-+-D1 01 +-		Q1 #1-	+- D1 Q1	<b>≭</b> <b>≭</b> .	
	+ D2 G2 + + D3 G3 +		92 <del>*  </del> 93 <del>*  </del>	-+ D2 Q2 -+ D3 Q3		
	-+O C 1	-+0 C	i i	+o c	1	
	· · · · · ·		┛╎	, <b>"</b>	Ľ	
	LL <u>A98</u> ]	l	L <u>A90</u> L	[ _ LA96	H)	

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

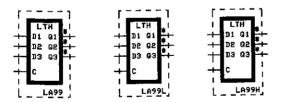
LA98 L cell TRIPLE D LATCH, WITH COMMON CLOCK





OCTAL LATCH

(804)


(

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

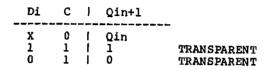
LA99 L ce	11 TRIPLE	D LATCH,	WITH COM	MON CLO	CK
_		S	$\mathbf{L}$	Н	
Tpd ++ Dl-		-	0.78		nø
D1-			0.58		ns
Tpd ++ D2-			0.90		ns
D2-			0.64		
Tpd ++ D3-		0.85			ns
D3-			0.57		ns
Tpd +- C->	-		0.93	-	ns
++ C->			0.93	-	ุทธ
Tpd +- C->		1.15		-	ns
++ C->			1.03		
Tpd +- C->			0.92		ns
++ C->	•Q3	0.84	0.92	0.67	ns
Tsu (C->Q]	,02,03)	0.70	0.70	0.20	ns mir
Th (C->Q1	,02,03)	0.10	0.10	0.30	ns mir
PW (C)		2.38	3.33	1.67	ns mir
I		2.65	2.11	3.50	mA
FAN-OUT LO	AD LIMIT:	9	4	9	loads
k-FACTOR	RISING FALLING	0.040	-	0.020	ns/LU ns/LU

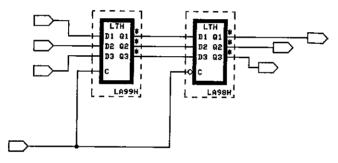
* Q1, Q2, Q3 MAY NOT BE WIRE-ORED

Q1, Q2, Q3 MAY NOT BE POWERED-DOWN C MUST BE DRIVEN BY A MACRO TRANSPARENT HIGH CLOCK



(804)


ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE


(804)

 $( \ )$ 

)

LA99 L cell TRIPLE D LATCH, WITH COMMON CLOCK





3 FALLING EDGE F/FS - 2 CELLS

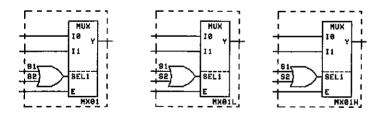
AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

(804)

1X00 0.5	L cell	2.1	MITY WT	TH GATED	SELECT.	Y. YN
1.00 0.5	L Cell	2:1	MUX #1			
	_		S	L	H	
	11->Y		0.57	0.51	0.35 0.28	ns
10,1 	11->Y		0.38 0.48	0.42 0.53	0.26	ns ns
pd +- I0, -+ I0,	11->1N 11->VN		0.48	0.53	0.35	ns
	52->Y		0.71	0.05	0.00	115
++ IO=			0.70	0.62	0.48	ns
IO=			0,70	0.73	0.48	ns
+- I0=			0.68	0.73	0.55	ns
-+ I0=	1,I1 <b>=</b> 0		0.68	0.63	0.40	ns
	62->YN					
- ++ I0≃.	1,11=0		0.87	0.79	0.55	ns
IO≃			0.60	0.65	0.45	ns
+- IO=			0.61	0.63	0.51	ns
-+ IO=	0,11=1		0.89	0.80	0.46	ns
:			1.14	0.78	1.57	mA
AN-OUT LO.	AD LIMIT	:	9	4	9	loads
-FACTOR	RISING		0.04	0.04	0.02	ns/LU
FACIOR	FALLIN		0.04	0.08	0.04	ns/LU
s1, s2 -						
		T ONE	MUST E		BY A M	
	AT LEAS + S2) +	T ONE	MUST E	E DRIVEN	BY A MA 	
= I1 (S1 S1 S2 I	AT LEAS + S2) + 0 Il	3T ONE F IO (   Y	MUST E SI + S2 YN	E DRIVEN	BY A M	
f = I1 (S1) $S1 S2 I$ $0 0 1$	AT LEAS + S2) + 0 I1 X	3T ONE F IO (   Y   1	MUST E SI + S2 YN	E DRIVEN	BY A MA 	ACRO
S = I1 (S1) S1 S2 I 0 0 1 0 0 0	AT LEAS + S2) + 0 I1 X X	ST ONE I 0 ( Y 1 1 1 0	MUST E SI + S2 YN 0 1	E DRIVEN	BY A MA 	ACRO
S = I1 (S1) S1 S2 I 0 0 1 0 0 0 X 1 X	AT LEAS + S2) + 0 Il X X 1	ST ONE I 0 ( I Y I 1 I 0 I 1	MUST E SI + S2 YN 0 1 0	E DRIVEN	BY A MA 	ACRO
Image: square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square	AT LEAS + S2) + 0 I1 X X 1 0	T ONE 1 0 ( 1 Y 1 1 1 0 1 1 1 0 1 1 1 0	MUST E SI + SZ YN 0 1 0 1 0	E DRIVEN	BY A MA 	ACRO
=       I1       (S1         S1       S2       I         0       0       1         0       0       0         X       1       X         X       1       X	AT LEAS + S2) + 0 I1 X X 1 0 1	T ONE I 0 ( I Y I 1 I 0 I 1 I 0 I 1 I 1 I 1 I 1 I 1 I 1 I 1 I 1	MUST E SI + S2 YN 0 1 0	E DRIVEN	BY A MA 	ACRO
Image: square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square	AT LEAS + S2) + 0 I1 X X 1 0 1 0	T ONE 1 0 ( 1 Y 1 1 1 0 1 1 1 0 1 1 1 0	MUST E SI + S2 YN 0 1 0 1 0	E DRIVEN	BY A MP	ACRO
Image: second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	AT LEAS + S2) + 0 Il X X 1 0 1 0 0 0	F I0 (	MUST E SI + 82 YN 0 1 0 1 0 1 0 1 1 1	E DRIVEN	BY A MA 	ACRO I0 y 11 yH SEL1 MX00 I0 y 11 yH
Image: square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square	AT LEAS + S2) + 0 I1 X X 1 0 1 0 0 1	F I0 (	MUST E SI + S2 YN 0 1 0 1 0 1 0 1	E DRIVEN	BY A MP	ACRO I0 Y 11 YH SEL1 MX00 11 YH 11 YH 11 YH 11 YH 11 YH 5EL1
Image: Signal system       Image: Signal system         0       0         0       0         0       0         X       1         X       1         X       X         1       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X         X       X	AT LEAS + S2) + 0 I1 X X 1 0 1 0 0 1 0 0 1	F I0 (	MUST E SI + 82 YN 0 1 0 1 0 1 1 KNOWN	E DRIVEN	BY A MP	ACRO 10 y 11 yH SEL1 MH00 10 y 11 yH 11 yH
Image: second system       Image: second system         0       0       1         0       0       0         0       0       0         X       1       X         X       1       X         1       X       X         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       1	AT LEAS + S2) + 0 I1 X X 1 0 1 0 0 1 0 0 1	T ONE IO ( Y I 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	MUST E SI + S2 YN 0 1 0 1 0 1 1 KNOWN KNOWN	E DRIVEN	BY A MP	ACRO I0 Y 11 YH SELI MX00 11 YH 11 YH 11 YH 10 Y 11 YH 6EL1
Image: second system       Image: second system         0       0       1         0       0       0         0       0       0         X       1       X         X       1       X         1       X       X         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       1	AT LEAS + S2) + 0 I1 X X 1 0 1 0 0 1 0 0 1	T ONE IO ( Y I 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	MUST E SI + S2 YN 0 1 0 1 0 1 1 KNOWN KNOWN	E DRIVEN	BY A MP	ACRO I0 Y 11 YH SEL1 MX00 11 YH 11 YH 11 YH 11 YH 11 YH 5EL1
Image: second system       Image: second system         0       0       1         0       0       0         0       0       0         X       1       X         X       1       X         1       X       X         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       1	AT LEAS + S2) + 0 I1 X X 1 0 1 0 0 1 0 0 1	T ONE IO ( Y I 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	MUST E SI + S2 YN 0 1 0 1 0 1 1 KNOWN KNOWN	E DRIVEN	BY A MP	АСRO 10 у 11 ун 9 EL1 ИИХ 10 у 11 ун 9 EL1 ИИХ 10 у 11 ун 9 EL1 ИХ 10 у 11 ун 9 EL1 ИХ 10 у 11 ун 9 EL1 ИХ 10 у 11 ун 9 ЕСЛ 10 у
Image: square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square	AT LEAS + S2) + 0 I1 X X 1 0 1 0 0 1 0 0 1	T ONE IO ( Y I 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	MUST E SI + S2 YN 0 1 0 1 0 1 1 KNOWN KNOWN	E DRIVEN	BY A MP	АСRО ИUX 18 Y 11 YN 8EL1 МИХ 18 Y 11 YN 6EL1 МХ88 МХ88
Image: square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square square	AT LEAS + S2) + 0 I1 X X 1 0 1 0 0 1 0 0 1	T ONE IO ( Y I 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	MUST E SI + S2 YN 0 1 0 1 0 1 1 KNOWN KNOWN	E DRIVEN	BY A MP	ACRO INUX I8 y 11 yH SELI MUX I8 y I1 yH EELI MUX I8 y I1 yH EELI MUX I8 y I1 yH EELI HUX I8  I8 y I1 yH EELI HUX HUX HUX HUX HUX HUX HUX HUX
Image: second system       Image: second system         0       0       1         0       0       0         0       0       0         X       1       X         X       1       X         X       X       X         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       0         X       X       1	AT LEAS + S2) + 0 I1 X X 1 0 1 0 0 1 0 0 1	T ONE IO ( Y I 1 0 1 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0	MUST E SI + S2 YN 0 1 0 1 0 1 1 KNOWN KNOWN	E DRIVEN	BY A M ² 	АСRO 10 у 11 ун 9EL1 ИИХ 10 у 11 ун 9EL1 ИИХ 10 у 11 ун 9EL1 ИХ 10 у 11 ун 9EL1 ИХ 10 у 11 ун 9EL1 10 у 11 ун 10 у 11 ун 9EL1 10 у 10 у

AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx


ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

(804)

MX01 0.5	L cell 2:	1 MUX; EN	ABLE; GA	TED SELEC	Т, Y
Tpd ++10,I I0,I ++S1,S S1,S +-S1,S -+S1,S ++E->Y E->Y	1->Y 2->Y 2->Y 2->Y 2->Y 2->Y	S 0.74 0.47 0.85 0.79 0.67 0.86 1.03 0.91	0.87 0.73 0.77	H 0.41 0.33 0.51 0.51 0.53 0.47 0.69 0.59	ns ns ns ns ns ns ns ns
I		0.99	0.81	1.67	mA
FAN-OUT LO	AD LIMIT:	9	4	9	loads
k-factor	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

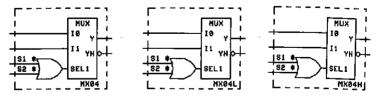
E MUST BE DRIVEN BY A MACRO S1, S2 - AT LEAST ONE MUST BE DRIVEN BY A MACRO

 $Y_{enabled} = I1 (S1 + S2) + I0 (S1 + S2)$ 



(

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oCI = ICC FOR 100% TTL, ELSE I = IEE


MX03	0	.5 L	cell	2	:1	MUX;	ENAE	BLE;	GATED	SELECI	, YN
Tpd + - Tpd	•+ :	I0,I1 I0,I1 S1->Y	->YN			8 0.5 0.8		L 0.6 0.7		.71 .41	ns ns
- + - +	⊦ •+	IO=0, IO=0, IO=1, IO=1,	I1=1 I1=1 I1=0			0.85	5 3	0.9 0.9 0.9 0.9	50 50	.67 .56 .64 .55	ns ns ns ns
Tpd + -	+ )					1.20	) 3	$1.0 \\ 1.1$	80 80	.76 .64	ns ns
I						0.99	)	0.8	1 1	.66	mA
FAN-C	ΤU	LOAD	LIM	[T:		9		4	9		loads
k-FAC	то	R	RISIN FALL:	•		0.04		0.0		.02 .04	ns/LU ns/LU
S1,	E MUST BE DRIVEN BY A MACRO S1, S2 - AT LEAST ONE MUST BE DRIVEN BY A MACRO 										
E	s1-	-S2	10	11	Ι	YN					
1 1 1 1 1 1 1	X 0 0 1 X 1 X X X X X X X	X 0 0 X 1 X 1 X X X X X X X	X 0 1 X X X X X 0 0 1 1	X X 0 0 1 1 0 1 0 1		0 1 0 1 1 0 0 1 UNKNO 0 0		- 1			1
							MUX IØ YN II SELI E MX03				ND

AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

MX04 0	.5 L cell	2:1 MUX	WITH GATE	D SELECT	, Y, YN
		8	L	н	
Tpd ++10	1->Y		9 0.50		ns
	)->YN		0 0.34		ns
10			2 0.57		ns
	->YN		7 0.60		ns
++11	->Y	0.5	5 0.49	0.17	ns
+-II	->YN	0.2		0.18	ns
II	->Y	0.5	2 0.57	0.32	ħв
-+I1	-YN	0.6	0.59	0.31	ns
++S1	, 52->Y		0 0.71		ns
+-51	.,82->Y		6 0.83		ns
	., 82->Y		3 0.78		ns
	,S2->Y	0.8	2 0.74	0.39	ns
	, 52->YN	0.5	7 0.62	0.44	ns
++S1	, S2->YN	0.8	0.80 0.80 0.80	0.44	ns
	, S2->YN	0.8	8 0.80	0.45	ns
-+S1	., 82->YN	0.5	9 0.64	0.45	ns
I	(	1.1	.7 0.81	1.62	mA
k-FACTOF	RISING	0.0	4 0.04	0.02	ns/LU
	FALLING		4 0.08		ns/LU
				•••	
FAN-OUT	LOAD LIMIT:	9	4	9	l oads
	,				
* EITHER	R SO OR SI	- MUST	BE DRIVEN	BY A MAC	RO



AMCC Q5000 MACRO LIBRARY SUMMARY - MXXX

(

 $\left( \right)$ 

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

(804)

MX04 0.5 L cell 2:1 MUX WITH GATED SELECT, Y, YN

 $Y = I1 (S1 + S2) + I0 (\overline{S1} + \overline{S2})$   $YN = \overline{Y}$ 

Sl 8	52 IO	11	1	Y	YN
0 (	· .	X		1	0
0 0 X 1	i X	X 1		1	0
X 1 1 X		0 1	ł	0 1	1 0
1 X X X		0 0		0 0	1 1
XXX	K 0	1		-	KN OW N KN OW N
, X 2	-	i	i	1	0

AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

(804)

MX04D 0.	5 L cell	2:1 MUX,GATE	D SELECT, Y, YN, DRIVE
		DRIVER	
Tpd ++10-3	>Y	0.23	ns
		0.16	ns
10-3	>Y	0.32	ns
-+IO-X	>YN	0.34	ns
++Il-)	>Y	0.23	ns
+-Il-)	>YN	0.16	nв
Il-X	>Y	0.32	na
-+Il-Y	YN	0.34	na
++Sl,	52->Y	0.44	ns
+-Sl,	52->Y	0.47	ns
-+sl,	52->Y	0.46	ns
S1,	52->Y	0.45	ns
+-51,	52->YN	0.41	ns
	S2->YN	0.47	ns
S1,	52->YN	0.48	ns
	S2->YN	0.43	ns
I		2.34	mA
k-FACTOR	RISING	0.02	ns/LU
	FALL ING	0.02	ns/LU
FAN-OUT LO	DAD LIMIT:	15	loads

EITHER SO OR SI - MUST BE DRIVEN BY A MACRO



ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC For 100% TTL, ELSE I = IEE

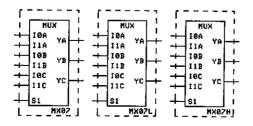
MX04D 0.5 L cell 2:1 MUX WITH GATED SELECT, Y, YN

 $Y = I1 (S1 + S2) + I0 (\overline{S1} + \overline{S2})$ 

YN = Ÿ

<b>S</b> 1	S2	10	11	1	Y	YN
•	0	1	x	!	1	0
•	0	0	x	!	0	1
х	1	х	T	ļ.	T	0
	1	х	0	1	0	1
1	Х	Х	1	ł.	1	0
1	Х	Х	0	1	0	1
х	Х	0	0	1	0	1
Х	Х	0	1	1	UNKNO	WN
' X	Х	1	0	1	UNKNO	WN
Х	х	1	1	1	1	0

AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx


(804)

)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

	tal all the ter ter ter ter ter ter ter				Ver 8- 100 fair 8- 100 mil
MX07 L cel	1 TRIPLE	2:1 MUX,	COMMON	SELECT	
			 L	Н	Her ter ter tege Har gas
	\ V 8	0 6 2	0.49	0.33	
Tpd ++ IOA- IOA-			0.49		ns
Tpd ++ IlA-			0.41		ns
IlA-			0.49		ns
Tpd ++ 10B-			0.48		ns
IOB-			0.46		ns
Tpd ++ IlB-		0.40			ns
IlB-			0.54		ns
Tpd ++ IOC,			0.34		ns
IOC-			0.41		ns
	>YC	0.49			ns
Tpd S1->		0.43	0.40	0.23	ns
	0,11i=0	0 7 0	0.63	0 40	ns
TOi=	0,Ili=1	0.75	0.05	0.45	ns
101- +- T0i=	1,Ili=0	0.73	0.66	0.56	ns
-+ TO1=	1,I1i=0	0.66	0.73	0.40	ns
Tpd $S1->$		0.00	0.75	0.40	116
++ TOi=	0,11i=1	0.81	0.74	0.54	ns
TO1=	1,I1i=1	0.76	0.82	0.50	ns
+- TOi=	1,I1i=0	0.74	0.77	0.60	ns
	1,I1i=0	0.85	0.79	0.45	ns
Tpd S1->			0.75	0.45	115
++ IOi=	0,11i=1	0.68	0.63	0.49	ns
	0,11i=1				ns
	1,Ili=0				ns
	1,11i=0		0.72		ns
i≓ A					
I		1.98	1.44	2.88	mA
FAN-OUT LOA	D LIMIT:	9	4	9	loads
k-FACTOR	RIS ING FALL ING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

SI MUST BE DRIVEN BY A MACRO



# AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx (804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

# MX07 L cell TRIPLE 2:1 MUX, COMMON SELECT

	= S]	.11A .11B .11C	+ <u>s</u> ]	• 1	[0B	
	<b>S</b> 1	Ilx	IOx	1	¥х	(x=A,B,C)
•	0	X	0	1	0	
	0	х	1		1	
	1	0	х	1	0	
	1	1	х	1	1	
	х	0	0	T	0	
	Х	0	1	I	UNKNOWN	
	х	1	0	1	UNKNOWN	
	х	1	1	Ŧ	1	

)

AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx (804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES  $TA = 25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

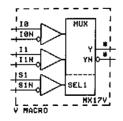
k-FACTOR RISING 0.04 0.04 0.02 ns/1	MX13 0.5	L cell 2	:1 MUX			
Tpd       S1->Y       0.010       0.020       ns         ++ I0=0,I1=1       0.67       0.61       0.47       ns         I0=0,I1=1       0.60       0.64       0.44       ns         +- I0=1,I1=0       0.66       0.70       0.54       ns         -+ I0=1,I1=0       0.68       0.62       0.38       ns         I       0.81       0.63       1.26       mA         FAN-OUT LOAD LIMIT:       9       4       9       10ac         k-FACTOR       RISING       0.04       0.04       0.02       ns/1	IO- Tpd ++ II-	>Y >Y	0.54 0.37 0.49	0.49 0.41 0.49	0.33 0.28 0.33	ns
FAN-OUT LOAD LIMIT:         9         4         9         10ac           k-FACTOR         RISING         0.04         0.04         0.02         ns/1	Tpd S1- ++ I0= I0= +- I0=	>Y 0,I1=1 0,I1=1 1,I1=0	0.67 0.60 0.66	0.61 0.64 0.70	0.47 0.44 0.54	ns ns ns
k-FACTOR RISING 0.04 0.04 0.02 ns/1	I		0.81	0.63	1.26	mA
	FAN-OUT LO	AD LIMIT:	9	4	9	loads
FALLING $0.04 \ 0.08 \ 0.04 \ ns/1$	k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU

SI MUST BE DRIVEN BY A MACRO

 $Y = (I0.\overline{SI}) + (I1.S1)$ 

81	10	11	I	Y	
0 0 1 1 X X X X X	0 1 X X 0 1 1 0	X X 0 1 0 1 0 1		0 1 0 1 0 1 UNKNOW UNKNOW	
	MUX 16 Y 11 11 11	ז ו ו ו ו ו ו ו ו ו ו		HUX I0 I1 S1 MX13L	

AMCC	Q5000	MACRO	LIBRARY	SUMMARY	-	MXxx	
------	-------	-------	---------	---------	---	------	--


(

)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

(804)

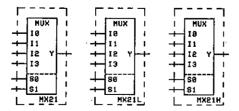
	UX, SUPER HIGH SPEED MUX RENTIAL INPUTS	
	v	
Tpd ++ 10,11->Y	0.24	ns
I0,I1->Y	0.24	ns
+- I0,I1->YN	0.24	ns
-+ I0,I1->YN		ns
Tpd ++ s1->Y,YN	0.35	ns
+- S1->Y, YN	0.35	ns
-+ \$1->Y, YN	0.35	ns
\$1->Y,YN	0.35	ns
I	3.05	mA
<b>k-FACTOR</b> RISING	0.020	ns/LU
FALLING	0.020	ns/LU
FAN-OUT LOAD LIMIT:	9	loads
S1,S1N EACH MUST BE	DRIVEN BY A MACRO	
	RENTIALLY DRIVEN FROM ONE	MACRO
	RENTIALLY DRIVEN FROM ONE	
	RENTIALLY DRIVEN FROM MAC	
*Y, YN OUTPUTS ARE 1/2	SWING (250mV)	
*Y, YN MUST DRIVE A DI		
*Y, YN CANNOT BE WIRE-	ORED	
*Y, YN CANNOT BE POWER	ED-DOW N	



AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx (804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

MX17V L cell 2:1 MUX, SUPER HIGH SPEED MUX DIFFERENTIAL INPUTS . و موجوع ورج من من من من من من من من من من  $Y = (I1.S1) + (I0.\overline{S1})$ IO ION IL ILN SL SLN | Y YN ..... хх X X 0 0 UND UND ILLEGAL 0 0 ХХ 0 1 JUND UND ILLEGAL X X 0 1 X X 0 1 0 1 10 1 1 0 11 0 1 X X 0 1 [UND UND ILLEGAL 1 0 Х х 0 0 1 UND UND ILLEGAL Х х 01 1 Õ 1 0 х Х | 1 0 1 0 UND UND ILLEGAL 1 1 UND UND ILLEGAL х Х 1 1 х Х ХХ 0 1 0 1 X X | 0 1 0 1 1 0 X X 1 1 0


AMCC Q5000 MACRO LIBRARY SU	MMARY - MXxx	
-----------------------------	--------------	--

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

MX21 L	cell 4:1 MU	X			
		S	L	н	
Tpd ++ :	IO->Y	0.95	0.84	0.49	ns
	I0->Y	0.60	0.70	0,40	ns
++	II->Y	0.93	0.81	0.49	ns
	I1->Y	0.59	0.70	0.40	ns
++	12->Y	0.98	0.86	0.49	ns
:	I2->Y	0.60	0.70	0.40	ns
++	I3->Y	1.00	0.88	0.50	ns
	I3->Y	0.64	0.74	0.42	ns
;	50->Y	0.93	1.05	0.56	ns
-+ ;	S0->Y	1.30	1,17	0.64	ns
+- ;	50->Y	1,02	1.12	0.71	ns
++ ;	50->Y	1.06	0.94	0.64	ns
;	S1->Y	1.07	1.18	0.65	ពន
<b>~</b> + ;	S1->Y	1.38	1.24	0.69	ns
+	S1->Y	1.24	1.35	0.90	ns
++ 1	61->Y	1.29	1.16	0.80	ns
I	f.	1.00	0.83	1.62	mA
FAN-OUT I	LOAD LIMIT	9	4	9	loads
k-FACTOR	RISING	0.04	0.04	0.02	ns/LU
	FALLING	0.04	0.08	0.04	ns/LU

SO, S1 - BOTH MUST BE DRIVEN BY A MACRO

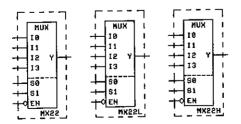
Y = 10.50.51 + 11.80.51 + 12.50.51 + 13.50.51



6-4-123

(804)

AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx


.

(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

 MX22	L cell	 4 : 1	MILX WITTH	LOW ENABLE	 3	
			S	L	н	
Tpd ++	+I0->Y		1.52	1.33		. nø
	-I0->Y		0.93	1.11	0.58	ns
	⊦Il->Y		1.47	1.28	0.69	ns
	-Il->Y		0.87	1.04	0.55	ns
Tpd ++			1.52	1.27	0.71	ns
	-12->Y		0.93	1.08	0.58	ns
	FI3->⊼		1.50	1.32		ns
	-I3->Y		0.88	1.05	0.56	ns
Tpd ++			1.56	1.34	0.84	ns
-	-S0->Y		1.17		0.82	ns
	+S0->Y		1.64		0.81	ns
	-S0->Y		1.28		0.75	ns
Tpd +			1.70	1.56	1.11	ns
-	-S1->Y		1.54	1.64	1.10	ns
	+S1->Y		1.67	1.65	0.92	ns
	-S1->Y		1.40	1.57		ns
Tpd			1.37	1.19	0.56	ns
+•	-EN->Y		0.83	0,96	0.68	ns
I			1.26	1.08	2.16	mA
FAN-O	JT LOAD	LIMIT:	9	4	9	loads
k-FACI	លេច រ	RISING	0.04	0.04	0.02	ns/LU
a ravi		FALLING	0.04		0.04	ns/LU
	•					

SO, SI - BOTH MUST BE DRIVEN BY A MACRO



AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx (804) ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

( -

MX22 L cell 4:1 MUX WITH LOW ENABLE

 $Y = 10.\overline{S0}.\overline{S1}.\overline{EN} + 11.S0.\overline{S1}.\overline{EN} + 12.\overline{S0}.S1.\overline{EN} + 13.S0.S1.\overline{EN}$ 

EN	S0	81	10	11	12	13	I	Y
0	0	0	0	X	X	х Х	1	0
0	0	0	1	Х	х	х		1
0	1	0	х	0	х	х		0
0	1	0	х	1	х	х	1	1
0	0	1	х	х	0	х		0
0	0	1	х	х	1	х		1
0	1	1	х	х	х	0	1	0
0	1	1	х	х	х	1	1	1
0	х	х	0	0	0	0	1	0
0	х	х	1	1	1	1	ł	1
1	х	х	х	X	х	х	1	0
Х	х	х	0	0	0	0	1	0

AMCC Q50	<b>DOO MAC</b> F	O LIBRARY	SUMMARY	-	MXxx
----------	------------------	-----------	---------	---	------

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

			,					
MX25	L	cell	4:1 MUX					
			IMPROVED	MX21,	WITH	YN	OU TPU T	
				S	L		H	i dar dar int dar på lär av.
Tpd	++	IO->Y		ĩ.13	0.9	9	0.43	ns
		IO->YN		0.67	0.7	7	0,41	ns
		I0->Y		0.68	0.8	80	0.38	ns
	-+	10->YN		1.12	0.9	8	0.37	ns
	++	I1->Y		1.13	0.9		0.43	ns
	+-	II->YN		0.64	0.7	4	0.41	ns
		I1->Y		0.68	0.8	10	0.38	ns
	-+	Il->YN		1.12	0.9		0.37	ns
		12->Y		1,13	-	9		ns
		12->YN		0.67		7		ns
		12->Y		0.68		0		ns
		12->YN		1.13		9		ns
		I3->Y		1.13		9		ns
		13->YN		0.64		4	-	ns
		13->Y		0.67	0.7	9		ns
		I3-YN		1.13		9		ns
		S0->Y		1.20	1.0		0.53	ns
		SO->YN		0.74	0.8		0.53	ns
		S0->Y		1.28	1.0		0.58	ns
		SO->YN		1.38	1.2		0.56	ns
		S0->Y		0.95	1.1		0.55	ns
		SO->YN		0.80	0.9		0.55	ns
		S0->Y		1.01	1.1		0.58	ns
		SO->YN		1.48	1.3		0.57	ns
		81->Y		1.42	1.2		0.70	ns
		S1->YN		1.00	1.1		0.74	ns
		81->Y		1.19	1.3		0.76	ns
		S1->YN		1.54	1.4		0.71	ns
		S1->Y		1.50	1.3		0.56	ns
		S1->YN		1.04			0.58	ns
		S1->Y		1.16			0.59	ns
	-+	S1->YN		1.61	1.4	5	0.58	ns

_____

(804)

(

_._...

MX25	LCE	11			MX21,	WITH YN	OUTPUT	
I						L 1.04	н 2.07	mA
FAN-	OUT LO	DAD LI	MIT		9	4	9	load
k-FA	CTOR	RIS FAI	ING LING		0.04 0.04	0.04 0.08	0.02 0.04	ns/I ns/I
s0,	sl -	вотн	MUSI	BE	DR IV EN	ВУ А МА	CRO	
<b>S</b> 1	I	<b>S</b> 0	ł	Y				
0 0 1 1	i	0 1 0 1		10 11 12 13				

()

 $\bigcirc$ 

. .

6-4-127

. .

.

AMCC	Q5000	MACRO	L IB RAR Y	SUMMARY	-	MXxx
				10-0-10-12-1 T		114100

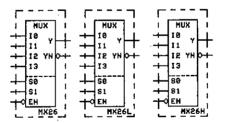
ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25 oCI = ICC FOR 100% TTL, ELSE I = IEE

MX26	L cell	4:1	MUX	WITH	LOW	ENABLE	
		S		L	E	 I	
Tpd +-	EN->Y	1.46	5	1.52		.28	ns
+	EN->Y	1.87	7	1.64	1	. 23	ns
Tpd ++	EN > YN	2.32	2	2.12	1	.44	ns
	EN->YN	2.08	3	2.20	1	.50	ns
++		1.25		1.09	0	.46	ns
		0.76		0.89	0	.42	ns
+-	10->YN	0.60		0.76		.41	ns
-+		1.11		0.97		.36	ns
++	11->Y	1.25		1.07		.46	ns
	11->Y	0.78	3	0.89	0	.42	ns
	Il->YN	0.63		0.69		.41	ns
	II->YN	1.12		0.94		.36	ns
++	I2->Y	1.26		1.11		.46	nв
	12->Y	0.79		0.89		.42	ns
+-	12->YN	0.63		0.73		.41	ns
	12->YN	1.07		0,95		.36	ns
++	13->Y	1.26		1.10		.46	nø .
	I3->Y	0.78	3	0.89		.41	ns
+-	13->YN	0.59		0.68		.40	ns
		1.05		0.92		.36	ns
++	SO->Y	1.34		1.18		.56	ns
		1.23		1.39		.63	ns
+-		1.34		1.18		.62	ns
-+	S0->Y	1.33		1.33		.59	ns
+-	SO->YN	0.72		0.81		.52	ns
-+	SO->YN	1.37		1.22		.54	ns
++		1.33		1.23		.53	ns
	SO->YN	1.48		1.31		.55	ns
	S1->Y	1.51		1.34		.74	ns
	S1->Y	1.40		1.52		.64	ns
	S1->Y	1.51		1.44		.76	ns
		1.50		1.47		.60	ns
		1.47		1.37		.71	ns
		1.46		1.40		.57	ns
	S1->YN	0.89		0.98	-	.71	ns
-+	S1->YN	1.57	r	1.41	0	.56	ns
	و جو جو جو حو حد حا حا نک حا حا حا حا کا کا کا تا حا						

(804)

 $( \ )$ 

 $\left( \right)$ 


AMCC Q5000 MACRO LIBRARY SUMMARY - MXxx (804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA = 25oC I = ICC FOR 100% TTL, ELSE I = IEE

MX26	L cell	4:1 MUX	WITH LOW	ENABLE	
I		S 2.07	L 1.71	H 2.75	mA
k-FACTOR	RISING FALLING	0.04 0.04	0.04 0.08	0.02 0.04	ns/LU ns/LU
FAN-OUT	LOAD LIMIT:	9	4	9	loads

50, S1 - BOTH MUST BE DRIVEN BY A MACRO

\$1 	<b>S</b> 0	EN		Y	YN
0	0	0	I	10	ĪŌ
0	1	0	1	11	ĪĪ
1	0	0	1	12	ĪŻ
1	1	0	1	13	ĪĴ
х	. X	1	I.	0	1



AMCC Q5000 MACRO SUMMARY - REGXX

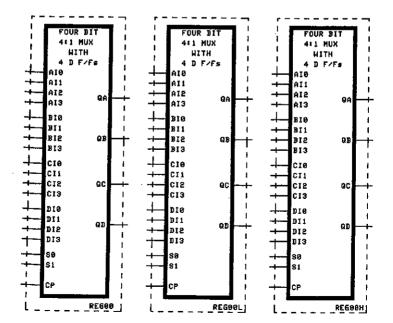
(804)

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25 \circ C$ I = ICC FOR 100% TTL, ELSE I = IEE

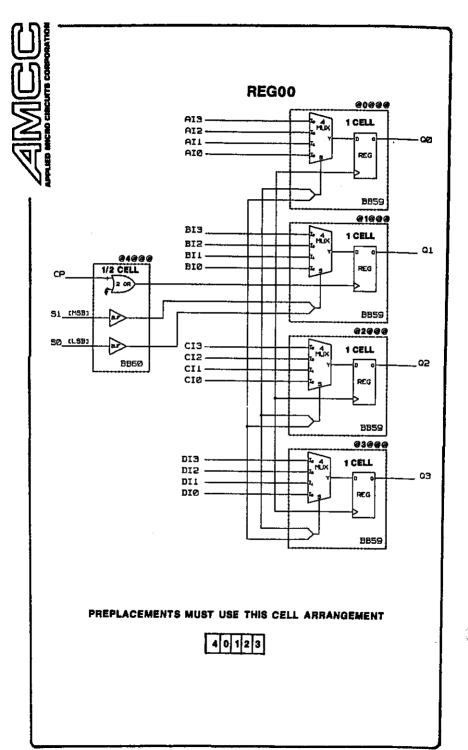
REG00 4.5 L cells 4		MUX WIT VERSAL F		6 to 14 to 24 po
Tpd ++CP->QA,QB,QC,QE +-CP->QA,QB,QC,QE			H 0.99 0.90	ns ns
Tsu (AIi,BIi,CI1,DI1) Thd (AI1,BI1,CI1,DI1) Tsu (S0) Thd (S0) Tsu (SI) Thd (SI) i= 0,1,2,3 FW(CP)	-0.52 1.79 <del>-</del> 1.26	-0.52 1.79 -1.26 2.17	-0.52 2.09 -1.26 2.17	ns min ns min ns min ns min ns min ns min ns min
I	7.11	6.39	8.01	mA
FAN-OUT LOAD LIMIT:	9	4	9	loads
INTERCONNECT PINS:	15	15	15	internal
k-FACTOR RISING FALLING	0.04 0.04	0.04 0.08		ns/LU ns/LU
MAXIMUM FREQUENCY OF OPERATION (fMAX)	210	150	360	MHz

* CP COUNTS AS 2 LOADS S0, S1, CP - EACH MUST BE DRIVEN BY A MACRO

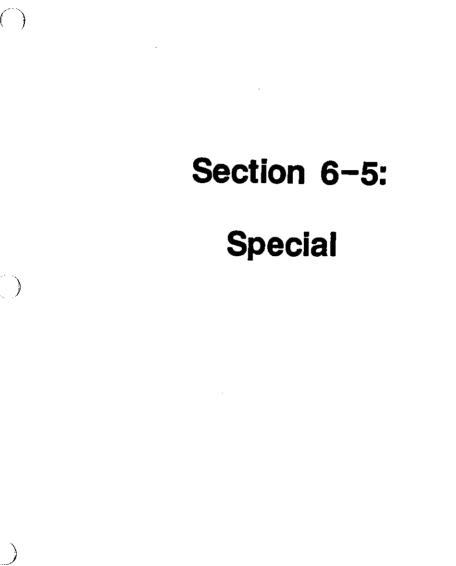
REG00 is a general-purpose or universal register configured as a four 4:1 MUXs with the output of each mux going into the D input of a positive-edge triggered D flip-flop.


0 0   10 0 1   11 1 0   12 1 1   13	<b>S</b> 1	60	1	I
	0 1	1 0	     	11 12

ALL VALUES ARE TYPICAL AT NOMINAL SUPPLY VOLTAGES TA =  $25_{OC}$ I = ICC FOR 100% TTL, ELSE I = IEE


REG00 4.5 L cells 4-BIT 4:1 MUX WITH D P/F - UNIVERSAL REGISTER

 <b>S1</b>	<b>S</b> 0	xI0	xIl	xI2	xI3	СР	ł	Qxn+1	(x=A, B, C, D)
	• •		• ••• ••• ••• •						-
0	0	0	Х	X	Х	R	1	0	
0	0	1	X	X	х	R	Ì	1	
0	1	x	Ö	x	x	R	- í	ō	
ō	ī	x	ĩ	x			- í	ĭ	
	-				х	R		T	
1	0	X	X	0	Х	R		0	
1	0	х	х	1	X	R		1	
1	1	Х	х	X	0	R	-	ō	
1	ī	x	X	x	ĭ	R	i	ĩ	
÷	÷.				_			-	
X	X	х	Х	х	х	0		Qxn	
Х	х	х	х	х	х	1	I	Õxn	


R = rising edge of the clock



(804)



ļ



()

.

(

(

WIRE-ORS

WIRE-OR MACROS (SYMBOLS) - REQUIRED

WIREOR2 WIREOR3 WIREOR4

• TIMING DELAYS DUE TO WIRE-ORS IN THE LOGIC ARE ACCOUNTED FOR BY THE FRONT-, INTERMEDIATE- AND BACK-ANNOTATION SOFTWARE.

• PARAMETRIC WIRE-ORS ARE NOT ALLOWED ON AMCC SCHEMATICS.

• ALL INPUT PINS ON A WIRE-OR MUST BE DRIVEN BY A MACRO AND THAT MACRO MAY DRIVE NO OTHER LOADS.

- NO WIRE-OR MAY DRIVE ANOTHER WIRE-OR.
- THE OUTPUT OF A WIRE-OR IS NOT TERMINATED.
- NO DRIVERS OR V-MACROS MAY DRIVE A WIRE-OR.

• OTHER MACROS THAT CANNOT DRIVE A WIRE-OR ARE IDENTIFIED BY AN "*" ON THE OUTPUT PIN.

• EXCESSIVE FAN-OUT LOADING ON A WIRE-OR WILL BE DETECTED.





ADDED POWER AND GROUNDS

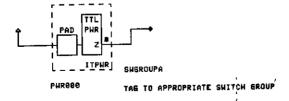
 ITPWR
 I/O CELL
 ADDED V_{CC} (+5V) PAD

 REQUIRED WHEN AN ADDED TTL POWER PAD IS NEEDED.

 USES THE PAD PORTION OF THE I/O CELL.

 USED TO OBTAIN A CORRECT POPULATION REPORT AND

 EXTERNAL PIN (PAD) COUNT BY THE AMCC MACROMATRIX

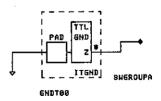

 ERC SOFTWARE.

 • GROUND THE INPUT PIN WITH THE WIRE POINTING UP

 • TERMINATE THE OUTPUT

NOTE: When placing an ITPWR macro, the macro must be interspersed with the simultaneously switching outputs it supports. On the Q5000T array and any other array with packages that contain internal power-ground planes, an ITFWR must be placed on a PAD that will allow it to be connected to the internal plane if it is at all possible. Placing it on a pad that must connect to a package pin requires a custom DUT board for test.






ADDED POWER AND GROUNDS

ITGND	I/O CELL	ADDED TTL GND PAD
USE: USEI EXT	5 THE PAD PORTI D TO OBTAIN A (	ADDED TTL GROUND PAD IS NEEDED. ION OF THE I/O CELL. CORRECT POPULATION REPORT AND D) COUNT BY THE AMCC MACROMATRIX
-	D THE INPUT PIN NATE THE OUTPUT	WITH THE WIRE POINTING DOWN

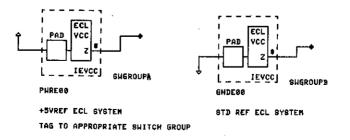
NOTE: When placing an ITGND macro, the macro must be interspersed with the simultaneously switching outputs it supports. On the Q5000T array and any other array with packages that contain internal power-ground planes, an ITGND must be placed on a PAD that will allow it to be connected to the internal plane if it is at all possible. Placing it on a pad that must connect to a package pin requires a custom DUT board for test.





TAE TO APPROPRIATE SWITCH GROUP

## ADDED POWER AND GROUNDS


IEVCC I/O CELL ADDED ECL VCC PAD

REQUIRED WHEN AN ADDED ECL VCC PAD IS NEEDED. USES THE PAD PORTION OF THE I/O CELL. USED TO OBTAIN A CORRECT POPULATION REPORT AND EXTERNAL PIN (PAD) COUNT BY THE AMCC MACROMATRIX ERC SOFTWARE.

- GROUND THE INFUT PIN WITH THE WIRE POINTING DOWN FOR STANDARD-REFERENCE ECL; POINTING UP FOR +5V REF ECL.
- TERMINATE THE OUTPUT
- IEVCC is a GROUND pad in a STD-REF ECL circuit.
- IEVCC is a POWER pad in a +5V REF ECL circuit.

NOTE: When placing an IEVCC macro, the macro must be interspersed with the simultaneously switching outputs it supports. On the Q5000T array and any other array with packages that contain internal power-ground planes, an IEVCC must be placed on a PAD that will allow it to be connected to the internal plane if it is at all possible. Placing it on a pad that must connect to a package pin requires a custom DUT board for test.





CHIP MACROS

## CHIP MACROS:

The chip macro documents the number of fixed power and ground pins that a particular array has for a given I/O mode. It also documents the internal pin count limit, the number of each type of cell available on a given array, the allowed cell utilization, the default power supply or supplies, the worst-case current multiplier for MIL and for COM product grades and other data as required by the AMCC MacroMatrix software.

• MUST BE USED - THE MACROMATRIX ERC SOFTWARE REQUIRES THAT A CHIP MACRO BE USED ON THE SCHEMATICS

• Follow directions in the MACROMATRIX USER'S GUIDE (Volume II, Section 8) and MACROMATRIX INSTALLATION MANUAL (Volume II, Section 7) to attach parameters or values to the chip macros as required - the procedure is EWS-specific.

• Ground and terminate inputs and outputs as shown in the examples. The inputs to a chip macro are always tied to <u>global ground</u> regardless of the individual chip technology (BiCMOS, Bipolar).

• The VTA pin is for use by the BIxx macros that require it. If none are present, terminate the pin. The Q5000 Series has no released BIxx macros.

• Chip macros are named (CHIP00) but are not listed in the placement file, use no cells and draw no current. They are informational units only.

 Page 1 of the schematics should contain the chip macros and the added power and ground macros.

CHIP MACROS

Chip Macro Parameters that are legal for the Q5000 Series:

	100%				
	$\mathbf{TTL}$	ECT	MIX	+5MIX	
PRODUCT_NAME AMCC ASSIGNED NAME	х	Х	х	х	
DEVICE_NUMBER AMCC ASSIGNED NUMBER	х	х	Х	х	
PRODUCT_GRADE MIL OR COM	Х	х	х	Х	
POWER_SUPPLY FOR OTHER THAN DEFAUL	r -	Х	Х	-	
~					

The first three parameters are REQUIRED for design submission - the ERCs will use default values and continue but the resulting report (AMCCERC.LST) cannot be submitted.

Allowed POWER_SUPPLY parameter values for the Q5000 Series:

default What appears on the chip macro graphic

STD4	-4.5V ECL VEE SUPPLY; ECL VCC = 0V
STD5	-5.2V ECL VEE SUPPLY; ECL VCC = 0V
<b>5VREF</b>	+5V ECL VCC SUPPLY; ECL VEE = 0V

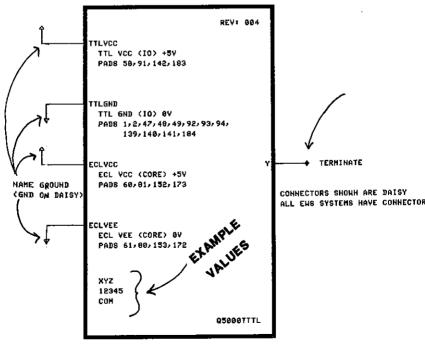
CHIP MACROS

 FOR SINGLE POWER SUPPLY +5V CIRCUITS; 100% TTL:

 Q5000TTTL
 FOR 100% TTL CIRCUIT ON A Q5000T

 Q3500TTTL
 FOR 100% TTL CIRCUIT ON A Q3500T

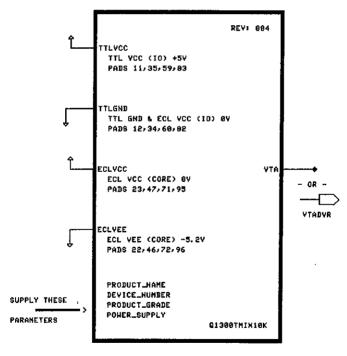
 Q1300TTTL
 FOR 100% TTL CIRCUIT ON A Q1300T


 QM1600TTTL
 FOR 100% TTL CIRCUIT ON A QM1600T

FOR SINGLE POWER SUPPLY CIRCUITS; 100% ECL:

Q5000TECL10K FOR 100% ECL 10K CIRCUIT ON A Q5000T Q3500TECL10K FOR 100% ECL 10K CIRCUIT ON A Q3500T Q1300TECL10K FOR 100% ECL 10K CIRCUIT ON A Q1300T QM1600TECL10K FOR 100% ECL 10K CIRCUIT ON A QM1600T Q5000TECL100K FOR 100% ECL 100K CIRCUIT ON A Q5000T Q3500TECL100K FOR 100% ECL 100K CIRCUIT ON A Q3500T Q1300TECL100K FOR 100% ECL 100K CIRCUIT ON A Q3500T

QM1600TECL100K FOR 100% ECL 100K CIRCUIT ON A QM1600T

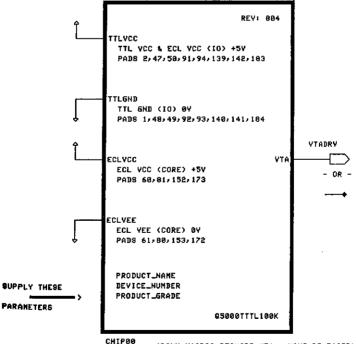

SUPPLY = -5.2V, -4.5V, or +5V



CHIP00

CHIP MACROS

FOR DUAL POWER SUPPLY CIRCUITS; ECL/TTL MIX: Q5000TMIX10K FOR ECL 10K/TTL CIRCUIT ON A Q5000T Q3500TMIX10K FOR ECL 10K/TTL CIRCUIT ON A Q3500T Q1300TMIX10K FOR ECL 10K/TTL CIRCUIT ON A Q1300T QM1600TMIX10K FOR ECL 10K/TTL CIRCUIT ON A QM1600T Q5000TMIX100K FOR ECL 100K/TTL CIRCUIT ON A Q5000T Q3500TMIX100K FOR ECL 100K/TTL CIRCUIT ON A Q3500T Q1300TMIX100K FOR ECL 100K/TTL CIRCUIT ON A Q1300T QM1600TMIX100K FOR ECL 100K/TTL CIRCUIT ON A QM1600T

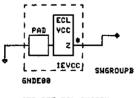



BIXX MACROS REQUIRE VTA PIN - NONE RELEAGED

6-5-10

CHIP MACROS

FOR SINGLE POWER SUPPLY +5V CIRCUITS; ECL/TTL MIX: Q5000TTTL10K FOR +5V REF ECL 10K/TTL CIRCUIT ON A Q5000T Q1300TTTL10K FOR +5V REF ECL 10K/TTL CIRCUIT ON A Q1300T QM1600TTTL10K FOR +5V REF ECL 10K/TTL CIRCUIT ON A QM1600T Q5000TTTL10K FOR +5V REF ECL 10K/TTL CIRCUIT ON A Q5000T Q5000TTTL10K FOR +5V REF ECL 100K/TTL CIRCUIT ON A Q5000T Q5000TTTL10K FOR +5V REF ECL 100K/TTL CIRCUIT ON A Q5000T Q1300TTTL10K FOR +5V REF ECL 100K/TTL CIRCUIT ON A Q1300T QM1600TTTL10K FOR +5V REF ECL 100K/TTL CIRCUIT ON A Q1300T QM1600TTTL10K FOR +5V REF ECL 100K/TTL CIRCUIT ON A Q1300T




CHIFUU

(BIXX MACROS REQUIRE VTA - NONE RELEASED)

CHIP MACROS





STD REF ECL BYSTEM

6-5-12